The normality of symmetry property of Cayley graphs of valencies 3 and 4 on the alternating group A5 is studied. We prove that all but four such graphs are normal;that A5 is not 5-CI. A complete classification of all ...The normality of symmetry property of Cayley graphs of valencies 3 and 4 on the alternating group A5 is studied. We prove that all but four such graphs are normal;that A5 is not 5-CI. A complete classification of all arc-transitive Cayley graphs on A5 of valencies 3 and 4 as well as some examples of trivalent and tetravalent GRRs of A5 is given.展开更多
LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ A...LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ Aut(G) such thatS α =T. Assume that m is a positive integer.G is called anm-Cl-group if every subsetS ofG withS =S ?1 and | S | ≤m is Cl. In this paper we prove that the alternating groupA 5 is a 4-Cl-group, which was a conjecture posed by Li and Praeger.展开更多
In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley ...In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley graphs are normal. The full automorphism group of these Cayley graphs is given and the half-transitivity and the arc-transitivity of these graphs are investigated. We show that this group is a 5-CI-group.展开更多
A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring o...A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring over the direct product of elementary abelian groups to be a Ci-Schur ring. By using this condition we offer short proofs for some known results on the CI-property for decomposable Schur rings over an elementary abelian group of rank at most 5.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.19831050 and 10161001)by RFDP(2000000102).
文摘The normality of symmetry property of Cayley graphs of valencies 3 and 4 on the alternating group A5 is studied. We prove that all but four such graphs are normal;that A5 is not 5-CI. A complete classification of all arc-transitive Cayley graphs on A5 of valencies 3 and 4 as well as some examples of trivalent and tetravalent GRRs of A5 is given.
基金the National Natural Science Foundation of China (Grant Nos. 19831050 and69873002) and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 97000141) , and also by Korea Science and Engineering Foundation (Grant No. K
文摘LetG be a finite group, andS a subset ofG \ |1| withS =S ?1. We useX = Cay(G,S) to denote the Cayley graph ofG with respect toS. We callS a Cl-subset ofG, if for any isomorphism Cay(G,S) ≈ Cay(G,T) there is an α∈ Aut(G) such thatS α =T. Assume that m is a positive integer.G is called anm-Cl-group if every subsetS ofG withS =S ?1 and | S | ≤m is Cl. In this paper we prove that the alternating groupA 5 is a 4-Cl-group, which was a conjecture posed by Li and Praeger.
文摘In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley graphs are normal. The full automorphism group of these Cayley graphs is given and the half-transitivity and the arc-transitivity of these graphs are investigated. We show that this group is a 5-CI-group.
文摘A Schur ring over a finite group is said to be decomposable if it is the generalized wreath product of Schur rings over smaller groups. In this paper we establish a sufficient condition for a decomposable Schur ring over the direct product of elementary abelian groups to be a Ci-Schur ring. By using this condition we offer short proofs for some known results on the CI-property for decomposable Schur rings over an elementary abelian group of rank at most 5.