Partial least squares (PLS) regression was applied to the Lunar Soft Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the lo...Partial least squares (PLS) regression was applied to the Lunar Soft Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and iow-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the posi- tive correlation between a major TiOe-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.展开更多
基金supported by the Research Support Funds Grant (RSFG) program of Indiana University-Purdue University at Indianapolis
文摘Partial least squares (PLS) regression was applied to the Lunar Soft Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and iow-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the posi- tive correlation between a major TiOe-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups.