Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coeffi...Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.展开更多
By means of the Hirota bilinear method and symbolic computation, high-order lump-type solutions and a kind of interaction solutions are presented for a(3+1)-dimensional nonlinear evolution equation.The high-order lump...By means of the Hirota bilinear method and symbolic computation, high-order lump-type solutions and a kind of interaction solutions are presented for a(3+1)-dimensional nonlinear evolution equation.The high-order lumptype solutions of the associated Hirota bilinear equation are presented, which is a kind of positive quartic-quadraticfunction solution.At the same time, the interaction solutions can also be obtained, which are linear combination solutions of quartic-quadratic-functions and hyperbolic cosine functions.Physical properties and dynamical structures of two classes of the presented solutions are demonstrated in detail by their graphs.展开更多
The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equ...The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equation by the Hirota bilinear method and test function method.With the help of Maple,we draw three-dimensional plots of the lump solution and lump-type solutions,and by observing the plots,we analyze the dynamic behavior of the(2+1)-dimensional dissipative AKNS equation.We find that the interaction solutions come in a variety of interesting forms.展开更多
Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonline...Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonlinear excitations such as the algebraic lump-type line solitons, the lumpoff-type half line solitons, and segment solitons.展开更多
This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we p...This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505154,11605156,11775146,and 11975204)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LQ16A010003 and LY19A050003)+5 种基金the China Scholarship Council(Grant No.201708330479)the Foundation for Doctoral Program of Zhejiang Ocean University(Grant No.Q1511)the Natural Science Foundation(Grant No.DMS-1664561)the Distinguished Professorships by Shanghai University of Electric Power(China)North-West University(South Africa)King Abdulaziz University(Saudi Arabia)
文摘Through the Hirota bilinear formulation and the symbolic computation software Maple, we construct lump-type solutions for a generalized(3+1)-dimensional Kadomtsev-Petviashvili(KP) equation in three cases of the coefficients in the equation. Then the sufficient and necessary conditions to guarantee the analyticity of the resulting lump-type solutions(or the positivity of the corresponding quadratic solutions to the associated bilinear equation) are discussed. To illustrate the generality of the obtained solutions, two concrete lump-type solutions are explicitly presented, and to analyze the dynamic behaviors of the solutions specifically, the three-dimensional plots and contour profiles of these two lump-type solutions with particular choices of the involved free parameters are well displayed.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11571008,51679132National Science Foundation under Grant No.DMS-1664561the Shanghai Science and Technology Committee under Grant No.17040501600
文摘By means of the Hirota bilinear method and symbolic computation, high-order lump-type solutions and a kind of interaction solutions are presented for a(3+1)-dimensional nonlinear evolution equation.The high-order lumptype solutions of the associated Hirota bilinear equation are presented, which is a kind of positive quartic-quadraticfunction solution.At the same time, the interaction solutions can also be obtained, which are linear combination solutions of quartic-quadratic-functions and hyperbolic cosine functions.Physical properties and dynamical structures of two classes of the presented solutions are demonstrated in detail by their graphs.
文摘The lump solution is one of the exact solutions of the nonlinear evolution equation.In this paper,we study the lump solution and lump-type solutions of(2+1)-dimensional dissipative Ablowitz-Kaup-Newell-Segure(AKNS)equation by the Hirota bilinear method and test function method.With the help of Maple,we draw three-dimensional plots of the lump solution and lump-type solutions,and by observing the plots,we analyze the dynamic behavior of the(2+1)-dimensional dissipative AKNS equation.We find that the interaction solutions come in a variety of interesting forms.
基金Supported by National Natural Science Foundation of China under Grant No.11435005Ningbo Natural Science Foundation(No.2015A610159)+1 种基金granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzwl1502sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonlinear excitations such as the algebraic lump-type line solitons, the lumpoff-type half line solitons, and segment solitons.
文摘This paper is devoted to the study of a (2 + 1)-dimensional extended Potential Boiti-Leon-Manna-Pempinelli equation. Firstly, By means of the standard Weiss Tabor Carnevale approach and Kruskal’s simplification, we prove the painlevé non integrability of the equation. Secondly, A new breather solution and lump type solution are obtained based on the parameter limit method and Hirota’s bilinear method. Besides, some interaction behavior between lump type solution and N-soliton solutions (N is any positive integer) are studied. We construct the existence theorem of the interaction solution and give the process of calculation and proof. We also give a concrete example to illustrate the effectiveness of the theorem, and some spatial structure figures are displayed to reflect the evolutionary behavior of the interaction solutions with the change of soliton number N and time t.