期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
截断核范数和全变差正则化高光谱图像复原 被引量:12
1
作者 杨润宇 贾亦雄 +1 位作者 徐鹏 谢晓振 《中国图象图形学报》 CSCD 北大核心 2019年第10期1801-1812,共12页
目的高光谱图像距具有较高的光谱分辨率,从而具备区分诊断性光谱特征地物的能力,但高光谱数据经常会受到如环境、设备等各种因素的干扰,导致数据污染,严重影响高光谱数据在应用中的精度和可信度。方法根据高光谱图像光谱维度特征值大小... 目的高光谱图像距具有较高的光谱分辨率,从而具备区分诊断性光谱特征地物的能力,但高光谱数据经常会受到如环境、设备等各种因素的干扰,导致数据污染,严重影响高光谱数据在应用中的精度和可信度。方法根据高光谱图像光谱维度特征值大小与所包含信息的关系,利用截断核范数最小化方法表示光谱低秩先验,从而有效抑制稀疏噪声;再利用高光谱图像的空间稀疏先验建立正则化模型,达到去除高密度噪声的目的;最终,结合上述两种模型的优势,构建截断核范数全变差正则化模型去除高斯噪声、稀疏噪声及其他混合噪声等。结果将本文与其他三种近期发表的主流去噪方法进行对比,模型平均峰信噪比提高3.20 dB,平均结构相似数值指标提高0.22,并可以应用到包含各种噪声、不同尺寸的图像,其模型平均峰信噪比提高1.33 dBo结论本文方法在光谱低秩中更加准确地表示了观测数据的先验特征,利用高光谱遥感数据的空间和低秩先验信息,能够对含有高密度噪声以及稀疏异常值的图像进行复原。 展开更多
关键词 高光谱遥感图像 图像复原 低秩先验 截断核范数 全变差 正则化方法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部