A compact arrayed-waveguide grating (AWG) on the silicon-on-insulator material is designed and fabricated with employment of waveguide-integrated turning mirrors (WITMs). By properly setting the incident angle wit...A compact arrayed-waveguide grating (AWG) on the silicon-on-insulator material is designed and fabricated with employment of waveguide-integrated turning mirrors (WITMs). By properly setting the incident angle with the value of 45°, the effective area of the WITM AWG is only 1.15 cm×1.15 cm with the arrayed waveguide area of 0.6cm×0.6cm. The crosstalk of the fabricated 1×6 AWG is better than -19 dB. The on-chip insertion loss is about -8.8 dB and the output nonuniformity is less than 0.6 dB. The polarization-dependent central wavelength shift is about 0.048nm and the polarization dependent loss is neglectable.展开更多
A design of broadband dual-polarized antenna with low cross polarization and high isolation was presented. The antenna is composed of a cross dipole, a folded ground, two feeding networks, and a reflector. The impedan...A design of broadband dual-polarized antenna with low cross polarization and high isolation was presented. The antenna is composed of a cross dipole, a folded ground, two feeding networks, and a reflector. The impedance bandwidth was enhanced by utilizing the mutual coupling between the two dipoles. A kind of meandering folded Marchand balun was skillfully integrated on the support column of the antenna to excite the dipole differentially, which can deliver both balanced (within 0.5 dB) power splitting and consistent (±5°) phase shifting from 1.71 GHz to 2.17 GHz. The standing wave ratios (SWRs) of each port are less than 1.5. By using this feeding network, the antenna has good performance in isolation (〉 45 dB) and cross polarization (〉 30 dB) over the entire operating frequency band. Moreover, the gain (-8.6 dB) of the proposed antenna is stable with frequency and the antenna structure is very firm due to the support column. The proposed antenna can be easily formed an array for digital cellular system (DCS), personal communications service (PCS) and 3rd generation (3G) applications.展开更多
基金Sponsored by the National Natural Science Foundation of China under Grant Nos 60377030 and 60436020, the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, the Shanghai Applied Material R&D Fund under Grant No 0417, and the Key Project of the Ministry of Education of China.
文摘A compact arrayed-waveguide grating (AWG) on the silicon-on-insulator material is designed and fabricated with employment of waveguide-integrated turning mirrors (WITMs). By properly setting the incident angle with the value of 45°, the effective area of the WITM AWG is only 1.15 cm×1.15 cm with the arrayed waveguide area of 0.6cm×0.6cm. The crosstalk of the fabricated 1×6 AWG is better than -19 dB. The on-chip insertion loss is about -8.8 dB and the output nonuniformity is less than 0.6 dB. The polarization-dependent central wavelength shift is about 0.048nm and the polarization dependent loss is neglectable.
基金supported by the National Natural Science Foundation of China (61301032)
文摘A design of broadband dual-polarized antenna with low cross polarization and high isolation was presented. The antenna is composed of a cross dipole, a folded ground, two feeding networks, and a reflector. The impedance bandwidth was enhanced by utilizing the mutual coupling between the two dipoles. A kind of meandering folded Marchand balun was skillfully integrated on the support column of the antenna to excite the dipole differentially, which can deliver both balanced (within 0.5 dB) power splitting and consistent (±5°) phase shifting from 1.71 GHz to 2.17 GHz. The standing wave ratios (SWRs) of each port are less than 1.5. By using this feeding network, the antenna has good performance in isolation (〉 45 dB) and cross polarization (〉 30 dB) over the entire operating frequency band. Moreover, the gain (-8.6 dB) of the proposed antenna is stable with frequency and the antenna structure is very firm due to the support column. The proposed antenna can be easily formed an array for digital cellular system (DCS), personal communications service (PCS) and 3rd generation (3G) applications.