The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The resul...The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The results show that the genetic expressions related to glucosinolates(GLS, the marker of plant resisting harmful effects) synthesis are significantly increased after the endocytosis in leaf cells is initiated by low-concentrations La(Ⅲ). Consequently, the activities in the key enzymes for catalyzing the GLS synthesis are promoted. Meanwhile, the contents of the precursors and substrates in GLS synthesis are increased. All the above changes accelerate the GLS synthesis and result in the maximum increase in GLS content by 14%. Finally, the uptake of nutrient elements in horseradish is enhanced, and the yield of horseradish is maximally increased by 25%. Therefore, low-concentration La(Ⅲ) is harmful to plants, and plants can promote growth to resist the harmful effects of low-concentration La(Ⅲ) by regulating GLS content. The results show a new insight into how rare earth elements stimulate plant growth, and provide a reference for the risk assessment of rare earth elements.展开更多
基金Project supported by the National Natural Science Foundation of China(21371100,31170477,21501068)Ph.D.Programs Foundation of Ministry of Education of China(20130093120006)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The harmful effect of low-concentration lanthanum [La(Ⅲ)] on plants was investigated by choosing horseradish as a representative of plants and using the methods of physics, analytical chemistry and biology. The results show that the genetic expressions related to glucosinolates(GLS, the marker of plant resisting harmful effects) synthesis are significantly increased after the endocytosis in leaf cells is initiated by low-concentrations La(Ⅲ). Consequently, the activities in the key enzymes for catalyzing the GLS synthesis are promoted. Meanwhile, the contents of the precursors and substrates in GLS synthesis are increased. All the above changes accelerate the GLS synthesis and result in the maximum increase in GLS content by 14%. Finally, the uptake of nutrient elements in horseradish is enhanced, and the yield of horseradish is maximally increased by 25%. Therefore, low-concentration La(Ⅲ) is harmful to plants, and plants can promote growth to resist the harmful effects of low-concentration La(Ⅲ) by regulating GLS content. The results show a new insight into how rare earth elements stimulate plant growth, and provide a reference for the risk assessment of rare earth elements.