This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem.The numerical method is designed for arbitrary spacedependent anisotropy directions and does not require any specially ...This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem.The numerical method is designed for arbitrary spacedependent anisotropy directions and does not require any specially adapted coordinate system.It is also designed to be equally accurate in the strongly and the mildly anisotropic cases.The method is applied to the Euler-Lorentz system,in the drift-fluid limit.This system provides a model for magnetized plasmas.展开更多
Based on modified Leishman-Beddoes (L-B) state space model at low Mach number (lower than 0.3), the airfoil aeroelastic system is presented in this paper. The main modifications for L-B model include a new dynamic...Based on modified Leishman-Beddoes (L-B) state space model at low Mach number (lower than 0.3), the airfoil aeroelastic system is presented in this paper. The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient. The bifurcation diagrams, the limit cycle oscillation (LCO) phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry. It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall, and the asymmetric periodical oscillation, which is caused by the interaction of dynamic stall and static divergence, only happens in the airfoil aeroelastic system with asymmetry. Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively. Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate, which can be applied to the investigation of airfoil stall flutter at low Mach number.展开更多
基金supported by the Marie Curie Actions of the EuropeanCommission in the frame of the DEASE project(MEST-CT-2005-021122)by the”F´ed´eration de recherche CNRS sur la fusion par confinementmagn´etique”,by theAssociation Euratom-CEA in the framework of the contract”Gyro-AP”(contract#V3629.001 avenant 1)by the University Paul Sabatier in the frame of the contract”MOSITER”.This work was performed while the first author held a post-doctoral position funded by the Fondation”Sciences et Technologies pour l’A´eronautique et l’Espace”,in the frame of the project”Plasmax”(contract#RTRA-STAE/2007/PF/002).
文摘This paper is devoted to the numerical approximation of a degenerate anisotropic elliptic problem.The numerical method is designed for arbitrary spacedependent anisotropy directions and does not require any specially adapted coordinate system.It is also designed to be equally accurate in the strongly and the mildly anisotropic cases.The method is applied to the Euler-Lorentz system,in the drift-fluid limit.This system provides a model for magnetized plasmas.
基金Aeronautical Science Foundation of China (08A52003)Science and Technology Foundation of Rotorcraft Aeromechanics Laboratory (9140C4001010901)
文摘Based on modified Leishman-Beddoes (L-B) state space model at low Mach number (lower than 0.3), the airfoil aeroelastic system is presented in this paper. The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient. The bifurcation diagrams, the limit cycle oscillation (LCO) phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry. It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall, and the asymmetric periodical oscillation, which is caused by the interaction of dynamic stall and static divergence, only happens in the airfoil aeroelastic system with asymmetry. Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively. Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate, which can be applied to the investigation of airfoil stall flutter at low Mach number.