In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_...In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.展开更多
This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent o...This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.展开更多
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially...The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.展开更多
Dynamic voltage scaling (DVS) is an efficient approach to maximize the battery life of portable devices. A novel overall planning strategy (OPS II) balancing slack supply and demand for DVS is proposed. An OPS II-...Dynamic voltage scaling (DVS) is an efficient approach to maximize the battery life of portable devices. A novel overall planning strategy (OPS II) balancing slack supply and demand for DVS is proposed. An OPS II-based slack-nibbling overall planning strategy (SNOPS) algorithm is also proposed, which iteratively nibbles slacks for appropriate tasks selected by an overall planning dynamic priority function to perform DVS until the slack is exhausted and an optimum voltage setting is obtained. For a high-load task set, SNOPS manages to recover battery overload while maintaining schedulability. For random variable-load task sets, SNOPS achieves a saving of 29.51% battery capacity on average, the suboptimal gap is 27.84% narrower than that of our previously proposed OPS-based algorithm, and 92.10% narrower than that of the algorithm proposed by Chowdhury et al. Results indicate that OPS n manages to save battery to various extents while maintaining schedulability, and demonstrates good load compatibility and close-to-optimal performance on average.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.22272055)multifunctional platform for innovation of ECNU(EPR).
文摘In-situ XRD,^(31)P NMR and ^(23)Na NMR were used to analyze the interaction behavior of Na_(3)V_(2)(PO_(4))_(3) at low voltage,and then a new intercalation model was proposed.During the transition from Na_(3)V_(2)(PO_(4))_(3) to Na_(4)V_(2)(PO_(4))_(3),Na ions insert into M1,M2 and M3 sites simultaneously.Afterwards,during the transition of Na_(4)V_(2)(PO_(4))_(3)to Na_(5)V_(2)(PO_(4))_(3),Na ions mainly insert into M3 site.
基金supported by the Program Research Grant UMPEDAC-2020(No. MOHE HICOE-UMPEDAC)the Ministry of Education Malaysia (No.RU003-2020, RU002-2021)the University of Malaya。
文摘This paper proposes a grid-tied photovoltaic(PV)inverter capable of low-voltage ride through(LVRT), reactive power support, and islanding protection. Unlike other LVRT inverters, the proposed inverter is independent of sag severity while maintaining the maximum power-point tracking(MPPT)under normal and faulty conditions. The addition of an energy storage buffer stage mitigates the DC-link voltage surge during sags. At the same time, the inverter injects the reactive power during back-to-back sags of variable depths. The control system of the inverter generates the appropriate reference signals for normal, LVRT, and anti-islanding modes while the MPPT continues running. The salient features of the proposed inverter are:(1) active power injection under normal grid conditions;(2)sag-depth independent LVRT with reactive power support;(3)no DC-link fluctuations;(4) continuous MPPT mode;and(5) simultaneous LVRT and anti-islanding support during a grid outage. The inverter demonstrates an uninterrupted operation and seamless transition between various operating modes. Simulations and the experimental prototype have been implemented to validate the efficacy of the proposed PV inverter.
基金supported by the National Natural Science Foundation of China(21776309,22122807 and 21706283)。
文摘The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2002AA1Z1490)the Spe-cialized Research Fund for the Doctoral Program of Higher Education of China (20040486049)
文摘Dynamic voltage scaling (DVS) is an efficient approach to maximize the battery life of portable devices. A novel overall planning strategy (OPS II) balancing slack supply and demand for DVS is proposed. An OPS II-based slack-nibbling overall planning strategy (SNOPS) algorithm is also proposed, which iteratively nibbles slacks for appropriate tasks selected by an overall planning dynamic priority function to perform DVS until the slack is exhausted and an optimum voltage setting is obtained. For a high-load task set, SNOPS manages to recover battery overload while maintaining schedulability. For random variable-load task sets, SNOPS achieves a saving of 29.51% battery capacity on average, the suboptimal gap is 27.84% narrower than that of our previously proposed OPS-based algorithm, and 92.10% narrower than that of the algorithm proposed by Chowdhury et al. Results indicate that OPS n manages to save battery to various extents while maintaining schedulability, and demonstrates good load compatibility and close-to-optimal performance on average.