期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于稀疏增强重加权与掩码块张量的红外弱小目标检测
1
作者 孙尚琦 张宝华 +3 位作者 李永翔 吕晓琪 谷宇 李建军 《红外技术》 CSCD 北大核心 2024年第3期305-313,共9页
高度异构的复杂背景破坏了场景的低秩性,现有算法难以利用低秩稀疏恢复方法从背景中分离出小目标。为了解决上述问题,本文将小目标检测问题转化为张量模型的凸优化函数求解问题,提出基于稀疏增强重加权与掩码块张量的检测模型。首先,将... 高度异构的复杂背景破坏了场景的低秩性,现有算法难以利用低秩稀疏恢复方法从背景中分离出小目标。为了解决上述问题,本文将小目标检测问题转化为张量模型的凸优化函数求解问题,提出基于稀疏增强重加权与掩码块张量的检测模型。首先,将掩码块图像以堆叠方式扩展至张量空间,并构建掩码块张量模型以筛选候选目标。在此基础上,利用结构张量构建稀疏增强重加权模型以抑制背景杂波,克服凸优化函数求解过程中设定加权参数的缺陷。实验表明本文检测算法在背景抑制因子及信杂比增益两方面都优于新近代表性算法,证明该算法的有效性。 展开更多
关键词 小目标检测 低秩稀疏恢复 掩码块张量 稀疏增强重加权
下载PDF
低秩稀疏矩阵优化问题的模型与算法 被引量:3
2
作者 潘少华 文再文 《运筹学学报》 北大核心 2020年第3期1-26,共26页
低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵... 低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵优化问题、以及低秩张量优化问题四个方面来综述其研究现状;其中,对稀疏矩阵优化问题,主要以稀疏逆协方差矩阵估计和列稀疏矩阵优化问题为典例进行概述,而对低秩矩阵优化问题,主要从凸松弛和因子分解法两个角度来概述秩约束优化和秩(正则)极小化问题的模型与算法研究。最后,总结了低秩稀疏矩阵优化研究中的一些关键与挑战问题,并提出了一些可以探讨的问题。 展开更多
关键词 低秩稀疏矩阵优化 凸松弛模型 因子分解模型 精确恢复条件 收敛性
下载PDF
基于L_(1−2)时空域总变分正则项的红外弱小目标检测算法
3
作者 赵德民 孙扬 +1 位作者 林再平 熊伟 《中国光学(中英文)》 EI CAS CSCD 北大核心 2023年第5期1066-1080,共15页
针对红外图像序列中复杂背景干扰下容易出现的高虚警问题,提出一种基于L_(1-2)时空域总变分正则项的红外弱小目标检测算法。首先,将红外图像序列转化为时空域红外张量块,该步骤可利用张量的高维数据结构优势关联图像序列中的时空域信息... 针对红外图像序列中复杂背景干扰下容易出现的高虚警问题,提出一种基于L_(1-2)时空域总变分正则项的红外弱小目标检测算法。首先,将红外图像序列转化为时空域红外张量块,该步骤可利用张量的高维数据结构优势关联图像序列中的时空域信息。然后,利用加权Schattenp范数和L_(1-2)时空域总变分正则项对低秩背景成分进行重构,以保留背景中起伏剧烈的边缘和角点,提高稀疏目标的重构精度。最后,将目标张量恢复为图像序列,利用自适应阈值分割方法得到最终的目标图像。与另外5种检测算法进行对比实验,结果显示,该方法的虚警率较Maxemeidan算法、Tophat算法、LIRDNet算法、DNANet算法以及WSNMSTIPT算法平均分别下降了71.4%、71.1%、68.5%、74.3%和20.47%;而在检测实时性方面,该算法耗时为Maxemeidan算法、DNANet算法以及WSNMSTIPT算法的42.4%、82.9%和28.7%。实验结果验证了该方法在检测性能上的优越性,表明该算法能够显著提高复杂背景干扰下的目标检测精度和效率。 展开更多
关键词 红外弱小目标 时空域信息 时空域总变分正则 张量主成分分析 低秩和稀疏重构
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部