The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power flu...The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power fluctuation. We studied the strategy of smoothing wind power fluctuation and the strategy of hybrid ES power distribution. Firstly, an effective control strategy can be extracted by comparing constant-time low-pass filtering(CLF), variable-time low-pass filtering(VLF), wavelet packet decomposition(WPD), empirical mode decomposition(EMD) and model predictive control algorithms with fluctuation rate constraints of the identical grid-connected wind power. Moreover, the mean frequency of ES as the cutoff frequency can be acquired by the Hilbert Huang transform(HHT), and the time constant of filtering algorithm can be obtained. Then, an improved low-pass filtering algorithm(ILFA) is proposed to achieve the power allocation between lithium battery(LB) and supercapacitor(SC), which can overcome the over-charge and over-discharge of ES in the traditional low-pass filtering algorithm(TLFA). In addition, the optimized LB and SC power are further obtained based on the SC priority control strategy combined with the fuzzy control(FC) method. Finally, simulation results show that wind power fluctuation can be effectively suppressed by LB and SC based on the proposed control strategies, which is beneficial to the development of wind and storage system.展开更多
An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method ac...An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.展开更多
Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging...Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.展开更多
The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective l...The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind c展开更多
This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invar...This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping str...High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping strategies.This paper analyzes the influences of a feed-forward voltage filter and feedback current filter for the inner controller for the high-frequency impedance characteristics of the MMC based on a model.Moreover,the mechanism,influencing factors,and limitations of the existing strategy including an additional lowpass filter in the voltage feed-forward stage are investigated.Secondly,a resonance suppression strategy for the inclusion of additional cascaded notch filters in the voltage feed-forward stage is proposed,and its parameter design method and applicable scenarios are analyzed.In addition,this paper analyzes the effects of the inclusion of an additional control in other stages for the inner controller of the MMC.Finally,the correctness of the theoretical analysis and the proposed strategy is verified based on the simulation of an actual project on PSCAD/EMTDC.展开更多
The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be acc...The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.展开更多
Analysis of tidal current and sea level has been made based on the observations from the summer of 2006 to the winter of 2007,respectively.The result indicates that a two-layer structure of residual current exists in ...Analysis of tidal current and sea level has been made based on the observations from the summer of 2006 to the winter of 2007,respectively.The result indicates that a two-layer structure of residual current exists in summer,with its upper layer going northwestward and the lower layer southeastward.In addition,some strong residuals exist in the neighboring depth of the pycnocline during the current period of astronomical tide.In winter,except some individual layersthe residual currents mostly direct to the northwest,from which we can see the fluctuation of abnormal sea-level and the appearance of associated current because of the changes of the wind field.The analysis of tidal ellipse indicates that the direction of the maximum semidiurnal component is clockwise from summer to winter,with an angle of 16-18.Moreover,in summer the semidiurnal component rotates with depth clockwise while the diurnal component counterclockwise.However,the vertical structure is almost homogeneous in winter.展开更多
Background Genotype-by-sequencing has been proposed as an alternative to SNP genotyping arrays in genomic selection to obtain a high density of markers along the genome.It requires a low sequencing depth to be cost ef...Background Genotype-by-sequencing has been proposed as an alternative to SNP genotyping arrays in genomic selection to obtain a high density of markers along the genome.It requires a low sequencing depth to be cost effective,which may increase the error at the genotype assigment.Third generation nanopore sequencing technology offers low cost sequencing and the possibility to detect genome methylation,which provides added value to genotype-by-sequencing.The aim of this study was to evaluate the performance of genotype-by-low pass nanopore sequencing for estimating the direct genomic value in dairy cattle,and the possibility to obtain methylation marks simultaneously.Results Latest nanopore chemistry(LSK14 and Q20)achieved a modal base calling accuracy of 99.55%,whereas previous kit(LSK109)achieved slightly lower accuracy(99.1%).The direct genomic value accuracy from genotype-by-low pass sequencing ranged between 0.79 and 0.99,depending on the trait(milk,fat or protein yield),with a sequencing depth as low as 2×and using the latest chemistry(LSK114).Lower sequencing depth led to biased estimates,yet with high rank correlations.The LSK109 and Q20 achieved lower accuracies(0.57-0.93).More than one million high reliable methylated sites were obtained,even at low sequencing depth,located mainly in distal intergenic(87%)and promoter(5%)regions.Conclusions This study showed that the latest nanopore technology in useful in a LowPass sequencing framework to estimate direct genomic values with high reliability.It may provide advantages in populations with no available SNP chip,or when a large density of markers with a wide range of allele frequencies is needed.In addition,low pass sequencing provided nucleotide methylation status of>1 million nucleotides at≥10×,which is an added value for epigenetic studies.展开更多
A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to d...A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm^2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of-3.88 dBFS at 9.8 kHz; the power consumption is 15 raW at a 5 V supply.展开更多
基金supported by National Key Research and Development Program of China (No. 2016YFB0900400)Foundation of Director of Institute of Electrical Engineering, Chinese Academy of Sciences (No. Y760141CSA)Jiangsu Province 2016 Innovation Ability Construction Special Funds (No. BM2016027)
文摘The rapid development of renewable energy sources such as wind power has brought great challenges to the power grid. Wind power penetration can be improved by using hybrid energy storage(ES) to mitigate wind power fluctuation. We studied the strategy of smoothing wind power fluctuation and the strategy of hybrid ES power distribution. Firstly, an effective control strategy can be extracted by comparing constant-time low-pass filtering(CLF), variable-time low-pass filtering(VLF), wavelet packet decomposition(WPD), empirical mode decomposition(EMD) and model predictive control algorithms with fluctuation rate constraints of the identical grid-connected wind power. Moreover, the mean frequency of ES as the cutoff frequency can be acquired by the Hilbert Huang transform(HHT), and the time constant of filtering algorithm can be obtained. Then, an improved low-pass filtering algorithm(ILFA) is proposed to achieve the power allocation between lithium battery(LB) and supercapacitor(SC), which can overcome the over-charge and over-discharge of ES in the traditional low-pass filtering algorithm(TLFA). In addition, the optimized LB and SC power are further obtained based on the SC priority control strategy combined with the fuzzy control(FC) method. Finally, simulation results show that wind power fluctuation can be effectively suppressed by LB and SC based on the proposed control strategies, which is beneficial to the development of wind and storage system.
基金the National Natural Science Foundation of China (60604011)
文摘An inertial frame based alignment (IFBA) method is presented, especially for the applications on a rocking platform, e.g., marine applications. Defining the initial body frame as the inertial frame, the IFBA method achieves the alignment by virtue of a cascade of low-pass FIR filters, which attenuate the disturbing acceleration and maintain the gravity vector. The aligning time rests with the orders of the FIR filter group, and the method is suitable for large initial misalignment case. An alignment scheme comprising a coarse phase by the IFBA method and a fine phase by a Kalman filter is presented. Both vehicle-based and ship-based alignment experiments were carried out. The results show that the proposed scheme converges much faster than the traditional method at no cost of precision and also works well under any large initial misalignment.
基金National Natural Science Foundation of China(No.52305373)Jiangxi Provincial Natural Science Foundation(No.20232BAB214053)+2 种基金Science and Technology Major Project of Jiangxi,China(No.20194ABC28001)Fund of Jiangxi Key Laboratory of Forming and Joining Technology for Aerospace Components,Nanchang Hangkong University(No.EL202303299)PhD Starting Foundation of Nanchang Hangkong University(No,EA202303235).
文摘Heavy components of low-alloy high-strength(LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency(PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state.As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor(IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s^(-1). Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.
基金supported by NASA(Grant Nos.80NSSC19K0844,80NSSC20K1670,80MSFC20C0019,and 80GSFC21M0002)support from NASA Goddard Space Flight Center internal funding programs(HIF,Internal Scientist Funding Model,and Internal Research and Development)。
文摘The Lunar Environment heliospheric X-ray Imager(LEXI)and Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)missions will image the Earth’s dayside magneto pause and cusps in soft X-rays after their respective launches in the near future,to specify glo bal magnetic reconnection modes for varying solar wind conditions.To suppo rt the success of these scientific missions,it is critical to develop techniques that extract the magnetopause locations from the observed soft X-ray images.In this research,we introduce a new geometric equation that calculates the subsolar magnetopause position(RS)from a satellite position,the look direction of the instrument,and the angle at which the X-ray emission is maximized.Two assumptions are used in this method:(1)The look direction where soft X-ray emissions are maximized lies tangent to the magnetopause,and(2)the magnetopause surface near the subsolar point is almost spherical and thus RSis nea rly equal to the radius of the magneto pause curvature.We create synthetic soft X-ray images by using the Open Geospace General Circulation Model(OpenGGCM)global magnetohydrodynamic model,the galactic background,the instrument point spread function,and Poisson noise.We then apply the fast Fourier transform and Gaussian low-pass filte rs to the synthetic images to re move noise and obtain accurate look angles for the soft X-ray pea ks.From the filte red images,we calculate RS and its accuracy for different LEXI locations,look directions,and solar wind densities by using the OpenGGCM subsolar magnetopause location as ground truth.Our method estimates RS with an accuracy of<0.3 RE when the solar wind density exceeds>10 cm-3.The accuracy improves for greater solar wind densities and during southward interplanetary magnetic fields.The method ca ptures the magnetopause motion during southwa rd interplaneta ry magnetic field turnings.Consequently,the technique will enable quantitative analysis of the magnetopause motion and help reveal the dayside reconnection modes for dynamic solar wind c
基金supported by the National Natural Science Foundation of China(61550110248)
文摘This paper highlights the memristor bridge-based lowpass filter (LPF) and improved image processing algorithms along with a novel adaptive Gaussian filter for denoising image and a new Gaussian pyramid for scale invariant feature transform (SIFT). First, a novel kind of LPF based on the memristor bridge is designed, whose cut-off frequency and other traits are demonstrated to change with different time and memristance. In light of the changeable parameter of the memristor bridge-based LPF, a new adaptive Gaussian filter and an improved SIFT algorithm are presented. Finally, experiment results show that the peak signalto- noise ratio (PSNR) of our denoising is bettered more than 2.77 dB compared to the corresponding of the traditional Gaussian filter, and our improved SIFT performances including the number of matched feature points and the percent of correct matches are higher than the traditional SIFT, which verifies feasibility and effectiveness of our algorithm.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金supported in part by Science and Technology Project of State Grid Corporation of China,“Research on Harmonic Oscillation ProblemsSuppression Strategies of Flexible DC Connected to AC Grid”,(No.SGTYHT/17-JS-199).
文摘High-frequency resonance can occur when a modular multilevel converter(MMC)is inserted into an AC grid.Additional damping control is a relatively low-cost resonance suppression strategy compared to passive damping strategies.This paper analyzes the influences of a feed-forward voltage filter and feedback current filter for the inner controller for the high-frequency impedance characteristics of the MMC based on a model.Moreover,the mechanism,influencing factors,and limitations of the existing strategy including an additional lowpass filter in the voltage feed-forward stage are investigated.Secondly,a resonance suppression strategy for the inclusion of additional cascaded notch filters in the voltage feed-forward stage is proposed,and its parameter design method and applicable scenarios are analyzed.In addition,this paper analyzes the effects of the inclusion of an additional control in other stages for the inner controller of the MMC.Finally,the correctness of the theoretical analysis and the proposed strategy is verified based on the simulation of an actual project on PSCAD/EMTDC.
基金Supported by National Natural Science Foundation of China (Grant Nos.51275264,51275265)National Hi-tech Research and Development Program of China (Grant No.2012DFA81190)
文摘The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019the State Basic Research Program of China under contract No.2005CB422303the National Natural Science Foundation of China under contract No.41006002
文摘Analysis of tidal current and sea level has been made based on the observations from the summer of 2006 to the winter of 2007,respectively.The result indicates that a two-layer structure of residual current exists in summer,with its upper layer going northwestward and the lower layer southeastward.In addition,some strong residuals exist in the neighboring depth of the pycnocline during the current period of astronomical tide.In winter,except some individual layersthe residual currents mostly direct to the northwest,from which we can see the fluctuation of abnormal sea-level and the appearance of associated current because of the changes of the wind field.The analysis of tidal ellipse indicates that the direction of the maximum semidiurnal component is clockwise from summer to winter,with an angle of 16-18.Moreover,in summer the semidiurnal component rotates with depth clockwise while the diurnal component counterclockwise.However,the vertical structure is almost homogeneous in winter.
文摘Background Genotype-by-sequencing has been proposed as an alternative to SNP genotyping arrays in genomic selection to obtain a high density of markers along the genome.It requires a low sequencing depth to be cost effective,which may increase the error at the genotype assigment.Third generation nanopore sequencing technology offers low cost sequencing and the possibility to detect genome methylation,which provides added value to genotype-by-sequencing.The aim of this study was to evaluate the performance of genotype-by-low pass nanopore sequencing for estimating the direct genomic value in dairy cattle,and the possibility to obtain methylation marks simultaneously.Results Latest nanopore chemistry(LSK14 and Q20)achieved a modal base calling accuracy of 99.55%,whereas previous kit(LSK109)achieved slightly lower accuracy(99.1%).The direct genomic value accuracy from genotype-by-low pass sequencing ranged between 0.79 and 0.99,depending on the trait(milk,fat or protein yield),with a sequencing depth as low as 2×and using the latest chemistry(LSK114).Lower sequencing depth led to biased estimates,yet with high rank correlations.The LSK109 and Q20 achieved lower accuracies(0.57-0.93).More than one million high reliable methylated sites were obtained,even at low sequencing depth,located mainly in distal intergenic(87%)and promoter(5%)regions.Conclusions This study showed that the latest nanopore technology in useful in a LowPass sequencing framework to estimate direct genomic values with high reliability.It may provide advantages in populations with no available SNP chip,or when a large density of markers with a wide range of allele frequencies is needed.In addition,low pass sequencing provided nucleotide methylation status of>1 million nucleotides at≥10×,which is an added value for epigenetic studies.
基金supported by the National Natural Science Foundation of China(No.61204121)
文摘A fourth-order low-distortion low-pass sigma-delta (∑△) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm^2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of-3.88 dBFS at 9.8 kHz; the power consumption is 15 raW at a 5 V supply.