For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltz...For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltzmann (HLB) scheme and non-coupled lattice Boltzmann (NCLB) scheme, this scheme is strictly lattice Boltzmann style and the fluid density couples directly with the temperature. Because it has got rid of the constraint of traditional thought in lattice Boltzmann scheme,on the basis of the equality among the particle speed c, the time step △t and the lattice grid spacing △x held, both c and △t can be adjusted in this scheme according to a "characteristic temperature" instead of the local temperature. The whole algorithm becomes more stable and efficient besides inheriting the intrinsically outstanding strong points of conventional lattice Boltz-mann scheme. In this scheme, we also take into account different molecular weights of species, so it is more suitable for simulating actual low Mach number reactive flows than previous work. In this paper, we simulated a so-called "counter-flow" premixed propane-air flame, and the results got by our scheme are much better than that obtained by NCLB. And the more important thing is that the exploration in this work has offered a kind of brand-new train of thought for building other novel lattice Boltzmann scheme in the future.展开更多
基金supported by the State Key Development Programme for Basic Research of China(Grant No.G1999022207)Program for New Century Excellent Talents in University,Ministry of Education(Grant No.NCET-04-0708)the National Natural Science Foundation of China(Grant No.60073044).
文摘For simulating low Mach number reactive flows, a simple and coupled lattice Boltzmann (CLB) scheme is proposed, by which the fluid density can bear significant changes. Different from the existing hybrid lattice Boltzmann (HLB) scheme and non-coupled lattice Boltzmann (NCLB) scheme, this scheme is strictly lattice Boltzmann style and the fluid density couples directly with the temperature. Because it has got rid of the constraint of traditional thought in lattice Boltzmann scheme,on the basis of the equality among the particle speed c, the time step △t and the lattice grid spacing △x held, both c and △t can be adjusted in this scheme according to a "characteristic temperature" instead of the local temperature. The whole algorithm becomes more stable and efficient besides inheriting the intrinsically outstanding strong points of conventional lattice Boltz-mann scheme. In this scheme, we also take into account different molecular weights of species, so it is more suitable for simulating actual low Mach number reactive flows than previous work. In this paper, we simulated a so-called "counter-flow" premixed propane-air flame, and the results got by our scheme are much better than that obtained by NCLB. And the more important thing is that the exploration in this work has offered a kind of brand-new train of thought for building other novel lattice Boltzmann scheme in the future.