目的由于夜间图像具有弱曝光、光照条件分布不均以及低对比度等特点,给基于夜间车辆图像的车型识别带来困难。此外,夜间车辆图像上的车型难以肉眼识别,增加了直接基于夜间车辆图像的标定难度。因此,本文从增强夜间车辆图像特征考虑,提...目的由于夜间图像具有弱曝光、光照条件分布不均以及低对比度等特点,给基于夜间车辆图像的车型识别带来困难。此外,夜间车辆图像上的车型难以肉眼识别,增加了直接基于夜间车辆图像的标定难度。因此,本文从增强夜间车辆图像特征考虑,提出一种基于反射和照度分量增强的夜间车辆图像增强网络(night-time vehicle image enhancement network based on reflectance and illumination components,RIC-NVNet),以增强具有区分性的特性,提高车型识别正确率。方法RIC-NVNet网络结构由3个模块组成,分别为信息提取模块、反射增强模块和照度增强模块。在信息提取模块中,提出将原始车辆图像与其灰度处理图相结合作为网络输入,同时改进了照度分量的约束损失,提升了信息提取网络的分量提取效果;在反射分量增强网络中,提出将颜色恢复损失和结构一致性损失相结合,以增强反射增强网络的颜色复原能力和降噪能力,有效提升反射分量的增强效果;在照度分量增强网络中,提出使用自适应性权重系数矩阵,对夜间车辆图像的不同照度区域进行有区别性的增强。结果在模拟夜间车辆图像数据集和真实夜间车辆图像数据集上开展实验,从主观评价来看,该网络能够提升图像整体的对比度,同时完成强曝光区域和弱曝光区域的差异性增强。从客观评价分析,经过本文方法增强后,夜间车型的识别率提升了2%,峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)指标均有相应提升。结论通过主观和客观评价,表明了本文方法在增强夜间车辆图像上的有效性,经过本文方法的增强,能够有效提升夜间车型的识别率,满足智能交通系统的需求。展开更多
文摘目的由于夜间图像具有弱曝光、光照条件分布不均以及低对比度等特点,给基于夜间车辆图像的车型识别带来困难。此外,夜间车辆图像上的车型难以肉眼识别,增加了直接基于夜间车辆图像的标定难度。因此,本文从增强夜间车辆图像特征考虑,提出一种基于反射和照度分量增强的夜间车辆图像增强网络(night-time vehicle image enhancement network based on reflectance and illumination components,RIC-NVNet),以增强具有区分性的特性,提高车型识别正确率。方法RIC-NVNet网络结构由3个模块组成,分别为信息提取模块、反射增强模块和照度增强模块。在信息提取模块中,提出将原始车辆图像与其灰度处理图相结合作为网络输入,同时改进了照度分量的约束损失,提升了信息提取网络的分量提取效果;在反射分量增强网络中,提出将颜色恢复损失和结构一致性损失相结合,以增强反射增强网络的颜色复原能力和降噪能力,有效提升反射分量的增强效果;在照度分量增强网络中,提出使用自适应性权重系数矩阵,对夜间车辆图像的不同照度区域进行有区别性的增强。结果在模拟夜间车辆图像数据集和真实夜间车辆图像数据集上开展实验,从主观评价来看,该网络能够提升图像整体的对比度,同时完成强曝光区域和弱曝光区域的差异性增强。从客观评价分析,经过本文方法增强后,夜间车型的识别率提升了2%,峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)指标均有相应提升。结论通过主观和客观评价,表明了本文方法在增强夜间车辆图像上的有效性,经过本文方法的增强,能够有效提升夜间车型的识别率,满足智能交通系统的需求。
文摘目的行人检测是自动驾驶、监控安防等领域的关键技术,为了解决目标检测算法在夜间复杂场景以及遮挡情况下造成的行人检测精度降低的问题,本文提出将低光增强算法(low-light image enhancement)添加到夜间行人检测任务中进行联合训练,并引入邻近感知模块(nearby objects hallucinator,NOH),提出了一种改进的夜间监控场景下的邻近感知行人检测算法(nearby-aware surveillance pedestrian detection algorithm,NSPDet)。方法为了提升夜间检测行人的准确率,在基线模型中加入低光增强模块(zero-reference deep curve estimation,Zero-DCE)。为了降低密集人群、遮挡造成的漏检、误检,利用NOH建模周围行人分布信息,提出了行人检测头(PedestrianHead)。为了减少模型参数,提升推理速度,本文利用深度可分离卷积将模型进行轻量化。结果在NightSurveillance数据集上进行3组消融实验,相比基线模型YOLOX(exceeding YOLO(you only look once)series),精度最优的NSPDet算法的AP(average precision)和AR(average recall)指标分别提升了10.1%和7.2%。此外,轻量化后的NSPDet模型参数减少了16.4 M,AP和AR分别衰减了7.6%和6.2%,但仍优于基线模型。在Caltech(Caltech pedestrian dataset)、CityPersons(a diverse dataset for pedestrian detection)和NightOwls(a pedestrians at night dataset)数据集上,与其他方法的对比实验表明,提出的夜间行人检测算法具有较低的平均误检率。结论提出的夜间行人检测算法,提升了基线模型夜间行人检测的精度,具备实时推理性能,在夜间复杂场景下表现出良好的鲁棒性。