促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现...促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。展开更多
Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas rec...Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.展开更多
文摘促使风电、光伏等分布式能源和电动汽车保有量快速增长。考虑电动汽车到电网(vehicle to grid,V2G)能量互动对多元化能源发电出力随机性及波动性的平抑作用,以及提升风/光电的消纳水平,采用虚拟电厂(virtual power plant,VPP)技术实现对二者的统一协调管理,进而结合电动汽车全生命周期碳排放数量和分布式能源运行时碳排放数量,构建电动汽车参与的虚拟电厂整体多目标优化模型,采用粒子群优化算法对该模型进行求解,从而优化系统运行成本及碳排放成本。在结合真实数据配置的算例模型上进行实验分析,实验结果表明,提出的优化模型可以有效调度虚拟电厂各要素,充分发挥电动汽车V2G入网充放电带来的运行和碳排放收益,可以为低碳目标背景下电网系统的安全稳定运行提供技术参考。
文摘Fuel poverty is most prevalent in North East England with 14.4%of fuel poor households in Newcastle upon Tyne.The aim of this paper was to identify a grid connected renewable energy system coupled with natural gas reciprocating combined heat and power unit,that is cost-effective and technically feasible with a potential to generate a profit from selling energy excess to the grid to help alleviate fuel poverty.The system was also aimed at low carbon emissions.Fourteen models were designed and optimized with the aid of the HOMER Pro software.Models were compared with respect to their economic,technical,and environmental performance.A solution was proposed where restrictions were placed on the size of renewable energy components.This configuration consists of 150 kW CHP,300 kW PV cells,and 30 kW wind turbines.The renewable fraction is 5.10%and the system yields a carbon saving of 7.9%in comparison with conventional systems.The initial capital investment is$1.24 million which enables the system to have grid sales of 582689 kWh/a.A conservative calculation determined that 40%of the sales can be used to reduce the energy cost of fuel poor households by$706 per annum.This solution has the potential to eliminate fuel poverty at the site analyzed.