Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragons blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-...Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragons blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium currents were observed. The results show that both blood resin and loureirin B could suppress TTX-S voltage-gated sodium currents in a dose-dependent way. The peak current amplitudes and the steady-state activation and inactivation curves are also made to shift by 0.05% blood resin and 0.2 mmol/L loureirin B. These results demonstrate that the effects of blood resin on TTX-S sodium current may contrib-ute to loureirin B in blood resin. Perhaps the analgesic effect of blood resin is caused partly by loureirin B directly interfering with the nociceptive transmission of primary sensory neurons.展开更多
采用压力驱动的亲和毛细管电泳技术(P-ACE)分别研究了生理酸度条件下(p H 7.4)3种黄酮类化合物龙血素A、龙血素B和剑叶龙血素C与人血清白蛋白(HSA)之间的相互作用。利用蛋白淌度变化和药物浓度的关系,计算得出上述三者与HSA的结合常数K...采用压力驱动的亲和毛细管电泳技术(P-ACE)分别研究了生理酸度条件下(p H 7.4)3种黄酮类化合物龙血素A、龙血素B和剑叶龙血素C与人血清白蛋白(HSA)之间的相互作用。利用蛋白淌度变化和药物浓度的关系,计算得出上述三者与HSA的结合常数Ka分别为0.414×105,0.252×105,1.816×105L/mol。结果表明,P-ACE可作为研究药物与蛋白相互作用的简便可行方法。展开更多
Loureirin A is a major active component of Draconis sanguis, a traditional Chinese medicine. This work aimed to investigate the activity of loureirin A against Candida albicans biofilms. 2, 3-Bis-(2-methoxy-4-nitro-5-...Loureirin A is a major active component of Draconis sanguis, a traditional Chinese medicine. This work aimed to investigate the activity of loureirin A against Candida albicans biofilms. 2, 3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2 H-tetrazolium-5-carboxanilide(XTT) reduction assay and scanning electron microscopy were used to investigate the anti-biofilm effect.Minimal inhibitory concentration testing and time-kill curve assay were used to evaluate fungicidal activity. Cell surface hydrophobicity(CSH) assay and hyphal formation experiment were respectively carried out to investigate adhesion and morphological transition,two virulence traits of C. albicans. Real-time RT-PCR was used to investigate gene expression. Galleria mellonella-C. albicans and Caenorhabditis elegans-C. albicans infection models were used to evaluate the in-vivo antifungal effect. Human umbilical vein endothelial cells and C. elegans nematodes were used to evaluate the toxicity of loureirin A. Our data indicated that loureirin A had a significant effect on inhibiting C. albicans biofilms, decreasing CSH, and suppressing hyphal formation. Consistently, loureirin A down-regulated the expression of some adhesion-related genes and hypha/biofilm-related genes. Moreover, loureirin A prolonged the survival of Galleria mellonella and Caenorhabditis elegans in C. albicans infection models and exhibited low toxicity. Collectively,loureirin A inhibits fungal biofilms, and this effect may be associated with the suppression of pathogenic traits, adhesion and hyphal formation.展开更多
文摘Using whole-cell patch clamp technique on the membrane of freshly isolated dorsal root ganglion (DRG) neurons, the effects of dragons blood resin and its important component loureirin B on tetrodotoxin-sensitive (TTX-S) voltage-gated sodium currents were observed. The results show that both blood resin and loureirin B could suppress TTX-S voltage-gated sodium currents in a dose-dependent way. The peak current amplitudes and the steady-state activation and inactivation curves are also made to shift by 0.05% blood resin and 0.2 mmol/L loureirin B. These results demonstrate that the effects of blood resin on TTX-S sodium current may contrib-ute to loureirin B in blood resin. Perhaps the analgesic effect of blood resin is caused partly by loureirin B directly interfering with the nociceptive transmission of primary sensory neurons.
文摘采用压力驱动的亲和毛细管电泳技术(P-ACE)分别研究了生理酸度条件下(p H 7.4)3种黄酮类化合物龙血素A、龙血素B和剑叶龙血素C与人血清白蛋白(HSA)之间的相互作用。利用蛋白淌度变化和药物浓度的关系,计算得出上述三者与HSA的结合常数Ka分别为0.414×105,0.252×105,1.816×105L/mol。结果表明,P-ACE可作为研究药物与蛋白相互作用的简便可行方法。
基金supported by the National Natural Science Foundation of China(No.81772124)the Shanghai Pujiang Program(No.14PJD001)the National Natural Science Foundation of China(No.NSFC81402823)
文摘Loureirin A is a major active component of Draconis sanguis, a traditional Chinese medicine. This work aimed to investigate the activity of loureirin A against Candida albicans biofilms. 2, 3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2 H-tetrazolium-5-carboxanilide(XTT) reduction assay and scanning electron microscopy were used to investigate the anti-biofilm effect.Minimal inhibitory concentration testing and time-kill curve assay were used to evaluate fungicidal activity. Cell surface hydrophobicity(CSH) assay and hyphal formation experiment were respectively carried out to investigate adhesion and morphological transition,two virulence traits of C. albicans. Real-time RT-PCR was used to investigate gene expression. Galleria mellonella-C. albicans and Caenorhabditis elegans-C. albicans infection models were used to evaluate the in-vivo antifungal effect. Human umbilical vein endothelial cells and C. elegans nematodes were used to evaluate the toxicity of loureirin A. Our data indicated that loureirin A had a significant effect on inhibiting C. albicans biofilms, decreasing CSH, and suppressing hyphal formation. Consistently, loureirin A down-regulated the expression of some adhesion-related genes and hypha/biofilm-related genes. Moreover, loureirin A prolonged the survival of Galleria mellonella and Caenorhabditis elegans in C. albicans infection models and exhibited low toxicity. Collectively,loureirin A inhibits fungal biofilms, and this effect may be associated with the suppression of pathogenic traits, adhesion and hyphal formation.