Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original...Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.展开更多
Metamaterials are widely used in electromagnetic radiation and camouflage for their flexible wavefront manipulation and polarization over a broad spectrum ranging from microwaves to optics.However,multispectral compat...Metamaterials are widely used in electromagnetic radiation and camouflage for their flexible wavefront manipulation and polarization over a broad spectrum ranging from microwaves to optics.However,multispectral compatible camouflage faces significant challenges due to tremendous scale differences of unit cells and desired radiative properties in various spectral regimes.This study assembles a micron-scale infrared emitter,a millimeter-scale microwave absorber,and a metal reflector to propose a hierarchical metamaterial that reduces microwave scattering and reflects low-infrared waves.As a proof of concept,laser etching micro-manufactures an upper infrared shielding layer with a periodic metal pattern.At the same time,bottom square frustum metastructure composites are fabricated and optimized based on genetic algorithms.Under the normal incidence transverse electromagnetic wave with a 90°azimuth angle,the hierarchical strategy and infrared unit create an asymmetric electric field distribution of local near-field coupling,which is conducive to generating additional resonance for broadening the absorption bandwidth.Experiments verify the multispectral camouflage,which shows a high absorption efficiency of more than 90%,ranging from 3.6 to 6.2 and from 8.4 to 18 GHz with a total thickness of 4.05 mm(0.049λmax).Due to the non-reflection of surrounding thermal signals in the infrared 2-22μm region,low-infrared emissivity(0.29)metamaterials can adapt to various thermal backgrounds.This methodology can provide a novel route for fabricating multispectral camouflage devices.展开更多
In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the imag...In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.展开更多
The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin fi...The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.展开更多
Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system bas...Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system based on Unmanned Aerial Vehicle(UAV)lossy communications.The performance analysis consists of the outage probability analysis and the Age-of-Information(AoI)analysis with outages.To begin with,we solve a lossy coding problem formulated from the UAV communication system,and derive a closed-form expression of the outage probability based on Shannon's lossy source-channel separation theorem.Then,we characterize the Peak AoI(PAoI)for the considered system,and further minimize the PAoI by deriving the optimal rate for generating information.Moreover,we analyze the system performance through theoretical calculations and simulations.The results indicate that the optimal server utilization ratio is always no larger than 0.5.In practical applications,we can utilize the proposed analytical framework to determine the system parameters which guarantee the timeliness performance of UAV lossy communications.展开更多
An ultrathin angle-insensitive color filter enabling high color saturation and a wide color gamut is proposed by relying on magnesium hydride-hydrogenated amorphous silicon[MgH2-a-Si:H]lossy dielectric layer.Based on ...An ultrathin angle-insensitive color filter enabling high color saturation and a wide color gamut is proposed by relying on magnesium hydride-hydrogenated amorphous silicon[MgH2-a-Si:H]lossy dielectric layer.Based on effective medium theory,the MgH2-a-Si:H layer with an ultrathin thickness can be equivalent to a quasi-homogeneous dielectric layer wit an effective complex refractive index,which can be tuned by altering the thickness of MgH2to obtain the targeted value o the imaginary part,corresponding to the realization of high color saturation.It is verified that the proposed color filte offers highly enhanced color saturation in conjunction with a wide color gamut by introducing a few-nanometer thic MgH2layer.As the MgH2-a-Si:H layer retains the advantages of high refractive index and tiny thickness,the proposed colo filter exhibits large angular tolerance up to±60°.In addition,MgH2with an unstable property can interconvert with Mg unde a dehydrogenation/hydrogenation reaction,which empowers the proposed color filter with dynamically tunable outpu color.The proposed scheme shows great promise in color printing and ultracompact display devices with high color sat uration,wide gamut,large angular tolerance,and dynamic tunability.展开更多
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to wi...An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.展开更多
Based on the raw data of spaceborne dispersive and interferometry imaging spectrometer,a set of quality evaluation metrics for compressed hyperspectral data is initially established in this paper.These quality evaluat...Based on the raw data of spaceborne dispersive and interferometry imaging spectrometer,a set of quality evaluation metrics for compressed hyperspectral data is initially established in this paper.These quality evaluation metrics,which consist of four aspects including compression statistical distortion,sensor performance evaluation,data application performance and image quality,are suited to the comprehensive and systematical analysis of the impact of lossy compression in spaceborne hyperspectral remote sensing data quality.Furthermore,the evaluation results would be helpful to the selection and optimization of satellite data compression scheme.展开更多
Periodic dielectric-loaded waveguide is one of the diaphragmatic waveguides. For the excellent mode-selective propagation ability, it is of value for applications in gyrotron-traveling-wave amplifiers (gyro-TWT), ac...Periodic dielectric-loaded waveguide is one of the diaphragmatic waveguides. For the excellent mode-selective propagation ability, it is of value for applications in gyrotron-traveling-wave amplifiers (gyro-TWT), accelerators, and other microwave propagation systems. This paper focuses on studying the application of the strong lossy-dielectric- loaded periodic waveguide in millimeter-wave gyro-TWT. It is revealed that due to the lossy property of the dielectric, the energy in the dielectric slots is absorbed effectively and the high order Bloch harmonics induced by the periodicity of the structure are suppressed, which changes the discrete spectrum under losstess condition into a continuous one. As a result, the periodicity of the system is severely suppressed and a mode in the hollow region could be approximated by a fast wave mode in an empty waveguide. These results bring specific guidance for the applications of the lossy dielectric-loaded waveguide in gyro-TWTs and other devices.展开更多
Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(...Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(RPL)has become an established standard routing protocol.Mobility under standard RPL remains a difficult issue as it causes continuous path disturbance,energy loss,and increases the end-to-end delay in the network.In this unique circumstance,a Balanced-load and Energy-efficient RPL(BE-RPL)is proposed.It is a routing technique that is both energy-efficient and mobility-aware.It responds quicker to link breakage through received signal strength-based mobility monitoring and selecting a new preferred parent reactively.The proposed system also implements load balancing among stationary nodes for leaf node allocation.Static nodes with more leaf nodes are restricted from participating in the election for a new preferred parent.The performance of BE-RPL is assessed using the COOJA simulator.It improves the energy use,network control overhead,frame acknowledgment ratio,and packet delivery ratio of the network.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutr...The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutral equation is reduced. Sufficient conditions for the existence and uniqueness of periodic regimes are formulated. The proof is based on the finding out of suitable operator whose fixed point is a periodic solution of the neutral equation. The method has a good rate of convergence of the successive approximations even for high frequencies.展开更多
The generalized principle of least action in electromagnetism is presented, which is effective even though in lossy and nonreciprocal media. It is pointed out that the Maxwell’s equations can be derived from this pri...The generalized principle of least action in electromagnetism is presented, which is effective even though in lossy and nonreciprocal media. It is pointed out that the Maxwell’s equations can be derived from this principle. At last for example of its applications, some useful variational expressions for electromagnetic fields are derived systematically from the principle.展开更多
A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a gene...A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a general characterization of dynamic elements in the cascade networks. The method is achieved by the finite difference-time domain (FDTD) algorithm for the MTL, and the skin effect is taken into account, the more accurate method is used to compute the skin effect. And this method is combined with the computation of the nonuniform transmission lines. Finally, several numerical examples are given, these results indicate that: the current of the lossy MTL is smaller than the lossless of the MTL; and when the load networks contain the dynamic element, the transition time of the current is longer than the MTL connected by resistance only.展开更多
In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality red...In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.展开更多
Formulas of diffraction field of lossy wedges with less than 180?wedge angle are derived on the basis of the Fresnel-Kirchhoff wave theory and their numerical results are compared with those of the heuristic lossy wed...Formulas of diffraction field of lossy wedges with less than 180?wedge angle are derived on the basis of the Fresnel-Kirchhoff wave theory and their numerical results are compared with those of the heuristic lossy wedge diffraction coefficient given by Luebbers (1984), showing good agreement between the two types of numerical results which have different bases in theory. The agreement shows that the lossy wedge diffraction coefficient as an extension of UTD is quite reasonable.展开更多
Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually inf...Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hypothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination(CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nondeterministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effectiveness of the proposed approach.展开更多
文摘Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.
基金supported by the National Natural Science Foundation of China(Nos.52103334,52071053,and U1704253)China Postdoctoral Science Foundation(Nos.2020M680946,2020M670748)the Fundamental Research Funds for the Central Universities(No.DUT20GF111).
文摘Metamaterials are widely used in electromagnetic radiation and camouflage for their flexible wavefront manipulation and polarization over a broad spectrum ranging from microwaves to optics.However,multispectral compatible camouflage faces significant challenges due to tremendous scale differences of unit cells and desired radiative properties in various spectral regimes.This study assembles a micron-scale infrared emitter,a millimeter-scale microwave absorber,and a metal reflector to propose a hierarchical metamaterial that reduces microwave scattering and reflects low-infrared waves.As a proof of concept,laser etching micro-manufactures an upper infrared shielding layer with a periodic metal pattern.At the same time,bottom square frustum metastructure composites are fabricated and optimized based on genetic algorithms.Under the normal incidence transverse electromagnetic wave with a 90°azimuth angle,the hierarchical strategy and infrared unit create an asymmetric electric field distribution of local near-field coupling,which is conducive to generating additional resonance for broadening the absorption bandwidth.Experiments verify the multispectral camouflage,which shows a high absorption efficiency of more than 90%,ranging from 3.6 to 6.2 and from 8.4 to 18 GHz with a total thickness of 4.05 mm(0.049λmax).Due to the non-reflection of surrounding thermal signals in the infrared 2-22μm region,low-infrared emissivity(0.29)metamaterials can adapt to various thermal backgrounds.This methodology can provide a novel route for fabricating multispectral camouflage devices.
基金supported by the Technology Development Program(S3344882)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.
基金the partial support to Agencia Estatal de Investigación PID2019-106231RB-I00 research projectUniversidad Rey Juan Carlos with research project “Células fotovoltaicas de tercera generación basadas en semiconductores orgánicos avanzados perovskitas híbridas en estructuras multiunión” (reference M2607)the pre-doctoral research grant of the Public University of Navarra。
文摘The results presented here show for the first time the experimental demonstration of the fabrication of lossy mode resonance(LMR) devices based on perovskite coatings deposited on planar waveguides. Perovskite thin films have been obtained by means of the spin coating technique and their presence was confirmed by ellipsometry, scanning electron microscopy, and X-ray diffraction testing. The LMRs can be generated in a wide wavelength range and the experimental results agree with the theoretical simulations. Overall, this study highlights the potential of perovskite thin films for the development of novel LMR-based devices that can be used for environmental monitoring, industrial sensing, and gas detection, among other applications.
基金supported by the National Natural Science Foundation of China(NSFC)(No.62001387)Shanghai Academy of Spaceflight Technology(SAST),China(No.SAST2020124).
文摘Information freshness is a key factor for Internet-of-Things(IoT)to make appropriate decisions and operations.This paper proposes an analytical framework for evaluating the timeliness performance of the IoT system based on Unmanned Aerial Vehicle(UAV)lossy communications.The performance analysis consists of the outage probability analysis and the Age-of-Information(AoI)analysis with outages.To begin with,we solve a lossy coding problem formulated from the UAV communication system,and derive a closed-form expression of the outage probability based on Shannon's lossy source-channel separation theorem.Then,we characterize the Peak AoI(PAoI)for the considered system,and further minimize the PAoI by deriving the optimal rate for generating information.Moreover,we analyze the system performance through theoretical calculations and simulations.The results indicate that the optimal server utilization ratio is always no larger than 0.5.In practical applications,we can utilize the proposed analytical framework to determine the system parameters which guarantee the timeliness performance of UAV lossy communications.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2019BF013)the National Natural Science Foundation of China(Nos.62005095 and 61905091)。
文摘An ultrathin angle-insensitive color filter enabling high color saturation and a wide color gamut is proposed by relying on magnesium hydride-hydrogenated amorphous silicon[MgH2-a-Si:H]lossy dielectric layer.Based on effective medium theory,the MgH2-a-Si:H layer with an ultrathin thickness can be equivalent to a quasi-homogeneous dielectric layer wit an effective complex refractive index,which can be tuned by altering the thickness of MgH2to obtain the targeted value o the imaginary part,corresponding to the realization of high color saturation.It is verified that the proposed color filte offers highly enhanced color saturation in conjunction with a wide color gamut by introducing a few-nanometer thic MgH2layer.As the MgH2-a-Si:H layer retains the advantages of high refractive index and tiny thickness,the proposed colo filter exhibits large angular tolerance up to±60°.In addition,MgH2with an unstable property can interconvert with Mg unde a dehydrogenation/hydrogenation reaction,which empowers the proposed color filter with dynamically tunable outpu color.The proposed scheme shows great promise in color printing and ultracompact display devices with high color sat uration,wide gamut,large angular tolerance,and dynamic tunability.
文摘An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.
基金supported by the Chinese 863 Plan Program under Grant 2012AA121504
文摘Based on the raw data of spaceborne dispersive and interferometry imaging spectrometer,a set of quality evaluation metrics for compressed hyperspectral data is initially established in this paper.These quality evaluation metrics,which consist of four aspects including compression statistical distortion,sensor performance evaluation,data application performance and image quality,are suited to the comprehensive and systematical analysis of the impact of lossy compression in spaceborne hyperspectral remote sensing data quality.Furthermore,the evaluation results would be helpful to the selection and optimization of satellite data compression scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60871051,60871047 and 60971072)
文摘Periodic dielectric-loaded waveguide is one of the diaphragmatic waveguides. For the excellent mode-selective propagation ability, it is of value for applications in gyrotron-traveling-wave amplifiers (gyro-TWT), accelerators, and other microwave propagation systems. This paper focuses on studying the application of the strong lossy-dielectric- loaded periodic waveguide in millimeter-wave gyro-TWT. It is revealed that due to the lossy property of the dielectric, the energy in the dielectric slots is absorbed effectively and the high order Bloch harmonics induced by the periodicity of the structure are suppressed, which changes the discrete spectrum under losstess condition into a continuous one. As a result, the periodicity of the system is severely suppressed and a mode in the hollow region could be approximated by a fast wave mode in an empty waveguide. These results bring specific guidance for the applications of the lossy dielectric-loaded waveguide in gyro-TWTs and other devices.
文摘Internet of Things(IoT)empowers imaginative applications and permits new services when mobile nodes are included.For IoT-enabled low-power and lossy networks(LLN),the Routing Protocol for Low-power and Lossy Networks(RPL)has become an established standard routing protocol.Mobility under standard RPL remains a difficult issue as it causes continuous path disturbance,energy loss,and increases the end-to-end delay in the network.In this unique circumstance,a Balanced-load and Energy-efficient RPL(BE-RPL)is proposed.It is a routing technique that is both energy-efficient and mobility-aware.It responds quicker to link breakage through received signal strength-based mobility monitoring and selecting a new preferred parent reactively.The proposed system also implements load balancing among stationary nodes for leaf node allocation.Static nodes with more leaf nodes are restricted from participating in the election for a new preferred parent.The performance of BE-RPL is assessed using the COOJA simulator.It improves the energy use,network control overhead,frame acknowledgment ratio,and packet delivery ratio of the network.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
文摘The paper deals with a lossy transmission line terminated at both ends by non-linear RCL elements. The mixed problem for the hyperbolic system, describing the transmission line, to an initial value problem for a neutral equation is reduced. Sufficient conditions for the existence and uniqueness of periodic regimes are formulated. The proof is based on the finding out of suitable operator whose fixed point is a periodic solution of the neutral equation. The method has a good rate of convergence of the successive approximations even for high frequencies.
文摘The generalized principle of least action in electromagnetism is presented, which is effective even though in lossy and nonreciprocal media. It is pointed out that the Maxwell’s equations can be derived from this principle. At last for example of its applications, some useful variational expressions for electromagnetic fields are derived systematically from the principle.
文摘A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a general characterization of dynamic elements in the cascade networks. The method is achieved by the finite difference-time domain (FDTD) algorithm for the MTL, and the skin effect is taken into account, the more accurate method is used to compute the skin effect. And this method is combined with the computation of the nonuniform transmission lines. Finally, several numerical examples are given, these results indicate that: the current of the lossy MTL is smaller than the lossless of the MTL; and when the load networks contain the dynamic element, the transition time of the current is longer than the MTL connected by resistance only.
文摘In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.
文摘Formulas of diffraction field of lossy wedges with less than 180?wedge angle are derived on the basis of the Fresnel-Kirchhoff wave theory and their numerical results are compared with those of the heuristic lossy wedge diffraction coefficient given by Luebbers (1984), showing good agreement between the two types of numerical results which have different bases in theory. The agreement shows that the lossy wedge diffraction coefficient as an extension of UTD is quite reasonable.
基金Project supported by the National Natural Science Foundation of China(Nos.61401409 and 51577191)
文摘Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hypothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination(CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nondeterministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effectiveness of the proposed approach.