This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applicati...This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.展开更多
Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatu...Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatures (TSe) have been investigated using X-ray diffraction spectra, scanning electron microscopy, and atomic force microscopy. A relationship between TSe and the secondary phases deposited in the initial stage is established to explain the experimental observations. The Se flux is not necessarily increased too much to reduce Sn loss and the consumption of Se during fabrication could also be reduced. The best solar cell, with an efficiency of 2.32%, was obtained at a medium Tse of 230 ℃ (active area 0.34 cm2).展开更多
文摘This paper describes the conductor eddy current loss that occurs in a permanent magnet type synchronous motor with a distributed winding stator using a rectangular copper wire designed for mild hybrid system applications for small vehicles.Compared with the conventional round wire inserter method,the space factor can be improved and the coil-end length can be shortened by applying a so-called hairpin windings using a pre-formed into hairpin shape of bar conductor,and as a result,DC current resistance of the armature winding can be reduced.However,since the conductor cross-sectional area tends to increases,the conductor eddy current loss generated by the space harmonics linkage becomes too large to ignore.In order to study the reduction of the conductor eddy current loss,it is important to visualize the spatial leakage flux distribution which causes loss and finely analyze how the magnetic path is formed.Therefore,analysis of the conductor eddy current loss distribution generated in the bar-wound conductor is performed using the CAE model that faithfully reproduces the coil-end shape of the actual machine.Furthermore,it was qualitatively clarified what ratio of conductor eddy current loss at various driving points.Finally,the results of preliminary study on reduction of conductor eddy current loss are reported.
基金supported by the Specialized Research Fund for the PhD Program of Higher Education(No.20120031110039)
文摘Cu2ZnSnSe4 (CZTSe) thin film solar cells have been fabricated using a one-step co-evaporation technique. The structural properties of polycrystalline CZTSe films deposited at different selenium evaporation temperatures (TSe) have been investigated using X-ray diffraction spectra, scanning electron microscopy, and atomic force microscopy. A relationship between TSe and the secondary phases deposited in the initial stage is established to explain the experimental observations. The Se flux is not necessarily increased too much to reduce Sn loss and the consumption of Se during fabrication could also be reduced. The best solar cell, with an efficiency of 2.32%, was obtained at a medium Tse of 230 ℃ (active area 0.34 cm2).