The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other ...The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.展开更多
A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-t...A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-tie wall in Permalloy is used to measure the remnant magnetic field by tilting the specimen and adjusting the objective lens current. The remnant magnetic field is estimated to be about 17 Oe, in a direction opposite to that of the objective lens magnetic field. The remnant magnetic field can be compensated by adjusting the value of the objective lens current.展开更多
Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due ...Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.展开更多
文摘The microstructure change in thin NiFe/Cu/NiFe films during the magnetization process was observed by the Lorentz electronmicroscopy. TWo types of films were prepared: (1) one NiFe layer with anisotropy and the other layer without, and (2) both NiFe layershave anisotropy normal each other. The domain wall migration and magnetization rotation processes in each of NiFe layers could be observed separately. The presence of magnetic anisotropy in the magnetic layer effectively controls the behavior of magnetic domains. Theinteraction between the two NiFe layers of the film could be observed not so strong in the present experiment.
基金supported by National Natural Science Foundation of China(No.10776037)
文摘A novel method was reported to measure the remnant magnetic field in Lorentz mode in a FEI Tecnai F20 transmission electron microscope equipped with a Lorentz lens. The movement of the circle Bloch line of the cross-tie wall in Permalloy is used to measure the remnant magnetic field by tilting the specimen and adjusting the objective lens current. The remnant magnetic field is estimated to be about 17 Oe, in a direction opposite to that of the objective lens magnetic field. The remnant magnetic field can be compensated by adjusting the value of the objective lens current.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0201102)the National Natural Science Foundation of China(Grant No.51571208)+3 种基金the Instrument Developing Project of Chinese Academy of Sciences(Grant No.YZ201536)the Program for Key Science and Technology Innovation Team of Zhejiang Province,China(Grant No.2013TD08)the K C Wong Education Foundation(Grant No.rczx0800)the K C Wong Magna Fund in Ningbo University
文摘Exchange bias effect has been widely employed for various magnetic devices.The experimentally reported magnitude of exchange bias field is often smaller than that predicted theoretically,which is considered to be due to the partly pinned spins of ferromagnetic layer by antiferromagnetic layer.However,mapping the distribution of pinned spins is challenging.In this work,we directly image the reverse domain nucleation and domain wall movement process in the exchange biased Co Fe B/Ir Mn bilayers by Lorentz transmission electron microscopy.From the in-situ experiments,we obtain the distribution mapping of the pinning strength,showing that only 1/6 of the ferromagnetic layer at the interface is strongly pinned by the antiferromagnetic layer.Our results prove the existence of an inhomogeneous pinning effect in exchange bias systems.