A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mas...A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.展开更多
In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those...In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those of the ORIGEN-S program in the static burnup mode,and the deviation was found to be less than 10%,which indicates that the results are in good agreement.Furthermore,the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed.In addition,the distribution phenomenon of the FPs under different flow rate conditions was studied.At the end of life,the FPs activity in the core region(including active region,and upper and lower plenum regions)accounted for 77.3%,and that in the hot leg #1,main pump,hot leg #2,heat exchanger,and cold leg region accounted for 1.2%,16.15%,0.99%,2.5%,and 1.9%,respectively,of the total FPs in the primary loop under normal operating conditions.The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24-22,400 cm^3 s^-1.The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop,radioactive source management design,thermal-hydraulic safety analysis,and radiochemical analysis of FPs of 2 MW MSRs.展开更多
New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reacto...New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.展开更多
1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the d...1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the draft tube.It has also been noted that effective diffu-sion or backmixing in the reactor has great influence on the flow and mass transferrates.In this case,accurate descriptions about the fluid flow and diffusion conditions inthe reactor are most necessary for effective amplification of them.展开更多
1 INTRODUCTIONSelf-aspirated reversed flow jet loop reactors,characterized by a well defined flow pat-tern,well better dispersing effects,relatively low power consumption and a high masstransfer coefficient,are widely...1 INTRODUCTIONSelf-aspirated reversed flow jet loop reactors,characterized by a well defined flow pat-tern,well better dispersing effects,relatively low power consumption and a high masstransfer coefficient,are widely used in chemical engineering,especially in biochemicalengineering.The characteristics of such reactors are highly random or stochastic due tothe influence of a variety of phenomena such as jetting and bubbling of the展开更多
文摘A modified internal-loop airlif reactor (MIALR) with a continuous slurry phase was studied to investigate the local hydrodynamic characteristics, including gas holdup, bubble size, bubble rise velocity and local mass transfer properties. Based on the analysis of geometrical construction and fluid properties of gas and slurry, MIALR was divided into six flow regions. In these flow regions, the local hydrodynamic characteristics were investigated over a wide range of operating variables. Furthermore, a new method was developed to measure the dissolved oxygen concentration. The volumetric mass-transfer coefficient in six flow regions was also calculated for comparison.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)The Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those of the ORIGEN-S program in the static burnup mode,and the deviation was found to be less than 10%,which indicates that the results are in good agreement.Furthermore,the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed.In addition,the distribution phenomenon of the FPs under different flow rate conditions was studied.At the end of life,the FPs activity in the core region(including active region,and upper and lower plenum regions)accounted for 77.3%,and that in the hot leg #1,main pump,hot leg #2,heat exchanger,and cold leg region accounted for 1.2%,16.15%,0.99%,2.5%,and 1.9%,respectively,of the total FPs in the primary loop under normal operating conditions.The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24-22,400 cm^3 s^-1.The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop,radioactive source management design,thermal-hydraulic safety analysis,and radiochemical analysis of FPs of 2 MW MSRs.
基金financially supported by the National Key Research & Development Program of China (2016YFB0301600)
文摘New modified combination mathematical models including the pores blocking models and the cake layer models were developed to describe the continuous cross-flow microfiltration in an airlift external loop slurry reactor. The pores blocking models were created based on the standard blocking law and the intermediate blocking law, and then the cake layer models were developed based on the hydrodynamic theory in which the calculation method of porosity of cake layer was newly corrected. The Air-Water-FCC equilibrium catalysts cold model experiment was used to verify the relevant models.Results showed that the calculated values fitted well with experimental data with a relative error of less than 10%.
基金This work was supported by the National Science Foundation of China.
文摘1 INTRODUCTIONGas and liquid distributions in a self-aspirated reverse flow jet loop reactor dependchiefly on the aspiration and the breakup against gas phase by the liquid nozzle aswell as the redistribution in the draft tube.It has also been noted that effective diffu-sion or backmixing in the reactor has great influence on the flow and mass transferrates.In this case,accurate descriptions about the fluid flow and diffusion conditions inthe reactor are most necessary for effective amplification of them.
基金Supported by the Science Foundation of the ChineseAcademy of Science.
文摘1 INTRODUCTIONSelf-aspirated reversed flow jet loop reactors,characterized by a well defined flow pat-tern,well better dispersing effects,relatively low power consumption and a high masstransfer coefficient,are widely used in chemical engineering,especially in biochemicalengineering.The characteristics of such reactors are highly random or stochastic due tothe influence of a variety of phenomena such as jetting and bubbling of the