期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于条件生成式对抗网络和AlexNet-BiLSTM模型的变电设备缺陷检测 被引量:3
1
作者 李艳丰 刘保辉 +1 位作者 马庆丰 丁柱卫 《东北电力技术》 2023年第7期7-14,共8页
针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像... 针对巡检机器人拍摄变电设备图像含噪严重、图像模糊和分辨率低影响设备缺陷检测的问题,提出一种基于条件生成式对抗网络和AlexNet-BiLSTM的变电设备缺陷检测方法,实现变电设备缺陷定位与辨识。首先,通过条件生成式对抗网络将模糊图像转换成清晰图像;其次,为了避免大量超参数的设置,提高网络的训练速度,引入迁移学习思想,采用变电设备图像训练预训练的AlexNet网络,通过AlexNet网络提取图像的高维特征向量,利用双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)对提取的特征向量进行分类;最后,在R-CNN框架下完成变电设备缺陷的标注和辨识。试验结果表明,所提方法复原的图像主观视觉效果良好,客观评价指标高,提高了变电设备缺陷检测准确率。 展开更多
关键词 条件生成式对抗网络 AlexNet网络 长短时记忆网络 变电设备 缺陷检测
下载PDF
基于 LSTM-ICNN的烟草包装机传动系统滚动轴承状态预测研究
2
作者 江逸斐 陈忠华 +2 位作者 兰志超 王少禹 张乐 《机械设计与制造工程》 2024年第3期97-101,共5页
为提高烟草包装机传动系统滚动轴承状态预测精度,提出一种基于长短时记忆(LSTM)卷积神经网络结合改进卷积神经网络(ICNN)的轴承状态预测方法。首先通过LSTM提取滚动轴承的时序特征;然后在卷积神经网络(CNN)全连接层中嵌入局部最大均值... 为提高烟草包装机传动系统滚动轴承状态预测精度,提出一种基于长短时记忆(LSTM)卷积神经网络结合改进卷积神经网络(ICNN)的轴承状态预测方法。首先通过LSTM提取滚动轴承的时序特征;然后在卷积神经网络(CNN)全连接层中嵌入局部最大均值差异函数,从而提取域不变特征,并通过回归损失函数输出传动系统滚动轴承状态预测结果;最后对以上预测方法进行试验验证。试验结果表明,在不同工况下,网络预测模型的RMSE和MAE都较小,且在实际在线监测系统应用中,RMSE和MAE分别为0.082和0.065。由此说明,提出的网络预测模型具有良好的预测精度,可用于烟草设备的在线故障监测。 展开更多
关键词 烟草设备 包装机 状态预测 在线监测 长短时记忆卷积神经网络
下载PDF
基于长短时记忆网络的高压隔离开关故障诊断研究 被引量:3
3
作者 陈富国 蔡杰 李中旗 《中国测试》 CAS 北大核心 2022年第7期114-119,共6页
针对高压隔离开关故障诊断准确率低的问题,利用安装在252 kV高压隔离开关操动机构上的传感器采集不同状态下的机械振动信号,研究经验模态分解振动信号方法,计算得到高压隔离开关状态的特征量;并采用相关性及主成分分析相结合的特征量降... 针对高压隔离开关故障诊断准确率低的问题,利用安装在252 kV高压隔离开关操动机构上的传感器采集不同状态下的机械振动信号,研究经验模态分解振动信号方法,计算得到高压隔离开关状态的特征量;并采用相关性及主成分分析相结合的特征量降维方法,提出一种基于长短时记忆网络的高压隔离开关故障在线建模与诊断方法。结果表明:采用相关性与主成分分析相结合的特征量降维方法分析得到的8维综合特征量可以代替25维特征量,实现特征量降维的目的;提出的在线故障诊断模型不仅离线状态实现正常和故障工况的准确分类,而且能够实时在线针对未知故障进行准确诊断,可为高压隔离开关实时在线故障诊断的实施提供技术支撑。 展开更多
关键词 高压隔离开关 故障诊断 经验模态分解 能量矩 长短时记忆网络 在线建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部