期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of Neural Network in Fault Location of Optical Transport Network 被引量:4
1
作者 Tianyang Liu Haoyuan Mei +1 位作者 Qiang Sun Huachun Zhou 《China Communications》 SCIE CSCD 2019年第10期214-225,共12页
Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance ... Due to the increasing variety of information and services carried by optical networks, the survivability of network becomes an important problem in current research. The fault location of OTN is of great significance for studying the survivability of optical networks. Firstly, a three-channel network model is established and analyzing common alarm data, the fault monitoring points and common fault points are carried out. The artificial neural network is introduced into the fault location field of OTN and it is used to judge whether the possible fault point exists or not. But one of the obvious limitations of general neural networks is that they receive a fixedsize vector as input and produce a fixed-size vector as the output. Not only that, these models is even fixed for mapping operations (for example, the number of layers in the model). The difference between the recurrent neural network and general neural networks is that it can operate on the sequence. In spite of the fact that the gradient disappears and the gradient explodes still exist in the neural network, the method of gradient shearing or weight regularization is adopted to solve this problem, and choose the LSTM (long-short term memory networks) to locate the fault. The output uses the concept of membership degree of fuzzy theory to express the possible fault point with the probability from 0 to 1. Priority is given to the treatment of fault points with high probability. The concept of F-Measure is also introduced, and the positioning effect is measured by using location time, MSE and F-Measure. The experiment shows that both LSTM and BP neural network can locate the fault of optical transport network well, but the overall effect of LSTM is better. The localization time of LSTM is shorter than that of BP neural network, and the F1-score of LSTM can reach 0.961566888396156 after 45 iterations, which meets the accuracy and real-time requirements of fault location. Therefore, it has good application prospect and practical value to introduce neural networ 展开更多
关键词 optical transport networks failure localization artificial NEURAL network longshort term memory network BP NEURAL network F1-Measure
下载PDF
基于长短时记忆网络的高压隔离开关故障诊断研究 被引量:3
2
作者 陈富国 蔡杰 李中旗 《中国测试》 CAS 北大核心 2022年第7期114-119,共6页
针对高压隔离开关故障诊断准确率低的问题,利用安装在252 kV高压隔离开关操动机构上的传感器采集不同状态下的机械振动信号,研究经验模态分解振动信号方法,计算得到高压隔离开关状态的特征量;并采用相关性及主成分分析相结合的特征量降... 针对高压隔离开关故障诊断准确率低的问题,利用安装在252 kV高压隔离开关操动机构上的传感器采集不同状态下的机械振动信号,研究经验模态分解振动信号方法,计算得到高压隔离开关状态的特征量;并采用相关性及主成分分析相结合的特征量降维方法,提出一种基于长短时记忆网络的高压隔离开关故障在线建模与诊断方法。结果表明:采用相关性与主成分分析相结合的特征量降维方法分析得到的8维综合特征量可以代替25维特征量,实现特征量降维的目的;提出的在线故障诊断模型不仅离线状态实现正常和故障工况的准确分类,而且能够实时在线针对未知故障进行准确诊断,可为高压隔离开关实时在线故障诊断的实施提供技术支撑。 展开更多
关键词 高压隔离开关 故障诊断 经验模态分解 能量矩 长短时记忆网络 在线建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部