In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement base...In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement based on the time-temperature equivalence principle.Considering the mechanical action on a slope,a finite element model of the deck pavement was established to determine the critical load position of tensileand shear stress of the steel deck pavement.Additionally,the influence of longitudinal slope on the mechanical response of the deck pavement under the conditions of uniform speed and emergency braking was analyzed.The results indicate that the maximum transverse tensile stress at the pavement surface and the maximum transverse shear stress at the pavement bottom are always greater than their longitudinal counterparts under uniform speed.Under emergency braking,however,the critical slope gradient of t e maximum transverse and longitudinal tensile stress at t e pavement surface is 6%.The maximum longitudinal shear stess at t e pavement bottom is always greater ta n t e maximum tansverse shear stess.This stidy is helpful in t e strctural design of large longitudinal slope steel deck pavements.展开更多
Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights i...Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights in the previous indices based on geopotential height. The years of extreme westward and eastward extension of SH using the new index are in good agreement with those defined by height index. There exists a distinct difference in large-scale circulation between the eastward and westward extension of SH under the new definition, which includes not only the circulation in the middle latitudes but also the flow in the lower latitudes. It seems that when the SH extends far to the east (west), the summer monsoon in the South China Sea is stronger (weaker) and established earlier (later). In addition, there exists a good relationship between the longitudinal position of SH and the summer rainfall in China. A remarkable negative correlation area appears in the Changjiang River valley, indicating that when the SH extends westward (eastward), the precipitation in that region increases (decreases). A positive correlation region is found in South China, showing the decrease of rainfall when the SH extends westward. On the other hand, the rainfall is heavier when the SH retreats eastward. However, the anomalous longitudinal position of SH is not significantly related to the precipitation in North China. The calculation of correlation coefficients between the index of longitudinal position of SH and surface temperature in China shows that a large area of positive values, higher than 0.6 in the center, covers the whole of North China, even extending eastward to the Korean Peninsula and Japan Islands when using NCEP/NCAR reanalysis data to do the correlation calculation. This means that when the longitudinal position of the SH withdraws eastward in summer, the temperature over North China is higher. On the other hand, when it moves westward, the temperature there is lower. This could explain the phenomenon of the ser展开更多
Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal po...Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.展开更多
基金The National Science Foundation of China(No.51778142)
文摘In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement based on the time-temperature equivalence principle.Considering the mechanical action on a slope,a finite element model of the deck pavement was established to determine the critical load position of tensileand shear stress of the steel deck pavement.Additionally,the influence of longitudinal slope on the mechanical response of the deck pavement under the conditions of uniform speed and emergency braking was analyzed.The results indicate that the maximum transverse tensile stress at the pavement surface and the maximum transverse shear stress at the pavement bottom are always greater than their longitudinal counterparts under uniform speed.Under emergency braking,however,the critical slope gradient of t e maximum transverse and longitudinal tensile stress at t e pavement surface is 6%.The maximum longitudinal shear stess at t e pavement bottom is always greater ta n t e maximum tansverse shear stess.This stidy is helpful in t e strctural design of large longitudinal slope steel deck pavements.
基金supported by the Innovation Key Prograrn of the Chinese Academy of Sciences ZKCX2-SW-210the National Natural Science Foundation of China under Grant Nol40135020,and 40233033.
文摘Using the relative vorticity averaged over a certain area, a new index for measuring the longitudinal position of the subtropical high (SH) in the western Pacific is proposed to avoid the increasing trend of heights in the previous indices based on geopotential height. The years of extreme westward and eastward extension of SH using the new index are in good agreement with those defined by height index. There exists a distinct difference in large-scale circulation between the eastward and westward extension of SH under the new definition, which includes not only the circulation in the middle latitudes but also the flow in the lower latitudes. It seems that when the SH extends far to the east (west), the summer monsoon in the South China Sea is stronger (weaker) and established earlier (later). In addition, there exists a good relationship between the longitudinal position of SH and the summer rainfall in China. A remarkable negative correlation area appears in the Changjiang River valley, indicating that when the SH extends westward (eastward), the precipitation in that region increases (decreases). A positive correlation region is found in South China, showing the decrease of rainfall when the SH extends westward. On the other hand, the rainfall is heavier when the SH retreats eastward. However, the anomalous longitudinal position of SH is not significantly related to the precipitation in North China. The calculation of correlation coefficients between the index of longitudinal position of SH and surface temperature in China shows that a large area of positive values, higher than 0.6 in the center, covers the whole of North China, even extending eastward to the Korean Peninsula and Japan Islands when using NCEP/NCAR reanalysis data to do the correlation calculation. This means that when the longitudinal position of the SH withdraws eastward in summer, the temperature over North China is higher. On the other hand, when it moves westward, the temperature there is lower. This could explain the phenomenon of the ser
基金This work was supported by the National Key Basic Research and Development Project of China 2004CB18300the Key Knowledge Innovation Project of Chinese Academy of Sciences(Grand No.KZCX3-SW-226)the National Natural Science Foundation of China under Grant Nos.40135020 and 40325015.
文摘Using the NCEP/NCAR reanalysis data, the China rainfall data of the China Meteorological Administration, and the sea surface temperature (SST) data of NOAA from 1951-2000, the features of the anomalous longitudinal position of the subtropical high in the western Pacific (SHWP) in the pre-rainy season in South China and associated circulation and precipitation are studied. Furthermore, the relationship between SHWP and SST and the eastern Asian winter monsoon is also investigated. Associated with the anomalous longitudinal position of SHWP in the pre-rainy season in South China, the flow patterns in both the middle and lower latitudes are different. The circulation anomalies greatly influence the precipitation in the pre-rainy season in South China. When the SHWP is in a west position (WP), the South China quasi-stationary front is stronger with more abundant precipitation there. However, when the SHWP is in an east position (EP), a weaker front appears with a shortage of precipitation there. There exists a good relationship between the longitudinal position of SHWP and SST in the tropical region. A negative correlation can be found both in the central and eastern tropical Pacific and the Indian Ocean. This means that the higher (lower) SST there corresponds to a west (east) position of SHWP. This close relationship can be found even in the preceding autumn and winter. A positive correlation appears in the western and northern Pacific and large correlation coefficient values also occur in the preceding autumn and winter. A stronger eastern Asian winter monsoon will give rise to cooler SSTs in the Kuroshio and the South China Sea regions and it corresponds to negative SST anomaly (SSTA) in the central and eastern Pacific and positive SSTA in the western Pacific in winter and the following spring. The whole tropical SSTA pattern, that is, positive (negative) SSTA in the central and eastern Pacific and negative (positive) SSTA in the western Pacific, is favorable to the WP (EP) of SHWP.