Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two...Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.展开更多
We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude o...We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.展开更多
基金supported by the State Key Development Program for Basic Research of China(Grant Nos.2017YFA0304300 and 2016YFA0300600)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000).
文摘Open physical systems described by the non-Hermitian Hamiltonian with parity-time-reversal(PT)symmetry show peculiar phenomena,such as the presence of an exceptional point(EP)at which the PT symmetry is broken and two resonant modes of the Hamiltonian become degenerate.Near the EP,the system could be more sensitive to external perturbations and this may lead to enhanced sensing.In this paper,we present experimental results on the observation of PT symmetry broken transition and the EP using a tunable superconducting qubit.The quantum system of investigation is formed by the two levels of the qubit and the energy loss of the system to the environment is controlled by a method of parametric modulation of the qubit frequency.This method is simple with no requirements for additional elements or qubit device modifications.We believe it can be easily implemented on multi-qubit devices that would be suitable for further exploration of non-Hermitian physics in more complex and diverse systems.
基金Project supported by the Ministry of Science and Technology of China(Grant Nos.2014CB921401,2017YFA0304300,2014CB921202,and2016YFA0300601)the National Natural Science Foundation of China(Grant No.11674376)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)
文摘We study the effect of longitudinally applied field modulation on a two-level system using superconducting quantum circuits. The presence of the modulation results in additional transitions and changes the magnitude of the resonance peak in the energy spectrum of the qubit. In particular, when the amplitude ,λz and the frequency COl of the modulation field meet certain conditions, the resonance peak of the qubit disappears. Using this effect, we further demonstrate that the longitudinal field modulation of the Xmon qubit coupled to a one-dimensional transmission line could be used to dynamically control the transmission of single-photon level coherent resonance microwave.