期刊文献+
共找到4,886篇文章
< 1 2 245 >
每页显示 20 50 100
基于一类长记忆过程的经济时间序列建模研究 被引量:8
1
作者 张学斌 刘嘉焜 +1 位作者 刘菁 刘泊旸 《数理统计与管理》 CSSCI 北大核心 2001年第1期1-6,11,共7页
本文介绍了长记忆的概念 ,首次提出了一种与 ADF检验相结合的长记忆性判断方法。给出了将参数 d的初估计与近似极大似然估计相结合 ,将时间序列长记忆分析与短记忆分析相结合的建立ARFIMA模型的方法。论文进行了实证研究 。
关键词 时间序列 长记忆 ARFIMA模型
下载PDF
国内外期铜价格之间的长期记忆成分和短期波动溢出效应 被引量:10
2
作者 方毅 《数理统计与管理》 CSSCI 北大核心 2008年第2期304-312,共9页
本文区分国内外期铜市场价格的长记忆成分和短期波动溢出效应,采用信息共享模型和永久一瞬时模型分离出不同期铜市场价格间的长记忆成分,得到不同市场期铜价格对"隐含有效价格"的贡献度;而且,利用t分布的BEKK模型分析两个市... 本文区分国内外期铜市场价格的长记忆成分和短期波动溢出效应,采用信息共享模型和永久一瞬时模型分离出不同期铜市场价格间的长记忆成分,得到不同市场期铜价格对"隐含有效价格"的贡献度;而且,利用t分布的BEKK模型分析两个市场期铜价格的短期波动溢出.特别,我们在BEKK基础上定义了不同变量间的波动溢出项,对两个市场期铜价格的波动溢出进行了度量.根据测算结果,我们发现国内外期铜价格有着紧密的联系,无论在长期,还是在短期,国外市场期铜价格的影响力都较大. 展开更多
关键词 期铜价格 长记忆 波动溢出
下载PDF
量化宽松与国际大宗商品市场:溢出性、非对称性和长记忆性 被引量:12
3
作者 苏治 尹力博 方彤 《金融研究》 CSSCI 北大核心 2015年第3期68-82,共15页
基于分整自回归条件异方差模型(FIGARCH),本文研究了考虑金融因素情况下量化宽松政策对国际大宗商品市场的直接影响,以及量化宽松通过金融市场对国际大宗商品市场的溢出效应。实证结果表明:量化宽松政策对国际大宗商品市场的影响主要表... 基于分整自回归条件异方差模型(FIGARCH),本文研究了考虑金融因素情况下量化宽松政策对国际大宗商品市场的直接影响,以及量化宽松通过金融市场对国际大宗商品市场的溢出效应。实证结果表明:量化宽松政策对国际大宗商品市场的影响主要表现为溢出性、非对称性和长记忆性,即金融市场的溢出效应在政策实施后得到加强,量化宽松政策对大宗商品市场有显著影响,且呈现行业性差异,大宗商品市场的典型长记忆特征得到显著增强,冲击造成的市场波动将持续较长时间。 展开更多
关键词 大宗商品 量化宽松 溢出性 非对称性 长记忆性 FIGARCH模型
原文传递
基于HP滤波的SARIMA中期电力负荷预测 被引量:11
4
作者 崔和瑞 穆玉佩 彭旭 《华北电力大学学报(自然科学版)》 CAS 北大核心 2016年第4期79-86,共8页
在用时间序列模型做电力负荷预测时,季节性是中期负荷预测重点分析的因素项。对全国2004年1月到2013年12月的电能消耗数据建立SARIMA模型,在模型定阶和参数显著性检验中发现,季节性因素的参数在调整过程中多数情况下不显著,这与季节性... 在用时间序列模型做电力负荷预测时,季节性是中期负荷预测重点分析的因素项。对全国2004年1月到2013年12月的电能消耗数据建立SARIMA模型,在模型定阶和参数显著性检验中发现,季节性因素的参数在调整过程中多数情况下不显著,这与季节性本身相矛盾,不利于SARIMA模型建立后的预测过程。鉴于这种情况,对原序列进行修整,将HP滤波法应用到ARIMA模型建立之前,提取不同频率的波谱序列。并运用OLS法分别建立模型进行分析,弱化趋势性、季节性等因素之间的相互作用,最后根据HP滤波原理对2014年1月到11月的电能消费量做出综合预测。从预测结果看,这种方法可以降低由序列趋势性、季节性等因素相互影响产生的相对误差,提高预测精度。 展开更多
关键词 电力负荷 SARIMA模型 HP滤波 曲线拟合 长记忆性
下载PDF
Lévy过程驱动的非高斯OU随机波动模型及其贝叶斯参数统计推断方法研究 被引量:9
5
作者 刘志东 刘雯宇 《中国管理科学》 CSSCI 北大核心 2015年第8期1-9,共9页
本文采用CGMY和GIG过程对非高斯OU随机波动率模型进行扩展,建立连续叠加Lévy过程驱动的非高斯OU随机波动率模型,并给出模型的散粒噪声(Shot-Noise)表现方式与近似。在此基础上,为了反映的波动率相关性,本文把回顾抽样(Retrospectiv... 本文采用CGMY和GIG过程对非高斯OU随机波动率模型进行扩展,建立连续叠加Lévy过程驱动的非高斯OU随机波动率模型,并给出模型的散粒噪声(Shot-Noise)表现方式与近似。在此基础上,为了反映的波动率相关性,本文把回顾抽样(Retrospective Sampling)方法扩展到连续叠加的Lévy过程驱动的非高斯OU随机波动模型中,设计了Lévy过程驱动的非高斯OU随机波动模型的贝叶斯参数统计推断方法。最后,采用金融市场实际数据对不同模型和参数估计方法进行验证和比较研究。本文理论和实证研究均表明采用CGMY和GIG过程对非高斯OU随机波动率模型进行扩展之后,模型的绩效得到明显提高,更能反映金融资产收益率波动率变化特征,本文设计的Lévy过程驱动的非高斯OU随机波动模型的贝叶斯参数统计推断方法效率也较高,克服了已有研究的不足。同时,实证研究发现上证指数收益率和波动率跳跃的特征以及波动率序列具有明显的长记忆特性。 展开更多
关键词 LÉVY过程 非高斯OU过程 可逆跳跃MCMC 长记忆
原文传递
Exploring Long-Memory Process in the Prediction of Interval-Valued Financial Time Series and Its Application
6
作者 SHEN Tingting TAO Zhifu CHEN Huayou 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第2期759-775,共17页
Long-memory process has been widely studied in classical financial time series analysis,which has merely been reported in the field of interval-valued financial time series.The aim of this paper is to explore long-mem... Long-memory process has been widely studied in classical financial time series analysis,which has merely been reported in the field of interval-valued financial time series.The aim of this paper is to explore long-memory process in the prediction of interval-valued time series(IvTS).To model the long-memory process,two novel interval-valued time series prediction models named as interval-valued vector autoregressive fractionally integrated moving average(IV-VARFIMA)and ARFIMAX-FIGARCH were established.In the developed long-memory pattern,both of the short term and long-term influences contained in IvTS can be included.As an application of the proposed models,interval-valued form of WTI crude oil futures price series is predicted.Compared to current IvTS prediction models,IV-VARFIMA and ARFIMAX-FIGARCH can provide better in-sample and out-of-sample forecasts. 展开更多
关键词 ARFIMAX-FIGARCH interval-valued time series IV-VARFIMA long-memory process WTI crude oil futures price
原文传递
Chaos game representation(CGR)-walk model for DNA sequences 被引量:4
7
作者 高洁 徐振源 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第1期370-376,共7页
Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their ... Chaos game representation (CGR) is an iterative mapping technique that processes sequences of units, such as nucleotides in a DNA sequence or amino acids in a protein, in order to determine the coordinates of their positions in a continuous space. This distribution of positions has two features: one is unique, and the other is source sequence that can be recovered from the coordinates so that the distance between positions may serve as a measure of similarity between the corresponding sequences. A CGR-walk model is proposed based on CGR coordinates for the DNA sequences. The CGR coordinates are converted into a time series, and a long-memory ARFIMA (p, d, q) model, where ARFIMA stands for autoregressive fractionally integrated moving average, is introduced into the DNA sequence analysis. This model is applied to simulating real CGR-walk sequence data of ten genomic sequences. Remarkably long-range correlations are uncovered in the data, and the results from these models are reasonably fitted with those from the ARFIMA (p, d, q) model. 展开更多
关键词 CGR-walk model DNA sequence long-memory ARFIMA(p d q) model
下载PDF
Chaos game representation walk model for the protein sequences 被引量:3
8
作者 高洁 蒋丽丽 徐振源 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4571-4579,共9页
A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic (HP) model has been proposed by Yu et al (Physica A 337(2004) 171). A CGR-walk model is proposed based on the ne... A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic (HP) model has been proposed by Yu et al (Physica A 337(2004) 171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CCR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q) model is introduced into the protein sequence analysis. This model is applied to simulating real CCR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably consistent with those available from the ARFIMA(p, d, q) model. 展开更多
关键词 chaos game representation CGR-walk model protein sequence long-memory ARFIMA(p d q) model autocorrelation function
下载PDF
基于分形理论的国际金价波动长记忆性识别及预测研究 被引量:4
9
作者 楼晓东 张良 《上海金融》 CSSCI 北大核心 2013年第6期80-84,118,共5页
分形理论为国际金价定量描述提供了新的研究思路。研究结果表明,识别长记忆性时,V/S方法最贴近实际,计算出的Hurst指数证实了国际黄金现货(周线/月线)存在着显著的长记忆性,表明黄金市场不是弱势有效的,因此在国际金价预测中运用统计分... 分形理论为国际金价定量描述提供了新的研究思路。研究结果表明,识别长记忆性时,V/S方法最贴近实际,计算出的Hurst指数证实了国际黄金现货(周线/月线)存在着显著的长记忆性,表明黄金市场不是弱势有效的,因此在国际金价预测中运用统计分析是有效的;随后通过分数差分将长记忆识别与分形预测模型有机联结了起来,构建的ARFIMA、FIGARCH与ARFIMA-GARCH等模型能够很好地刻画国际金价的内在波动规律,具有良好的定量预测功能。 展开更多
关键词 长记忆性 分形理论 R S分析 ARFIMA模型
下载PDF
中国进出口贸易市场分形特征的实证研究 被引量:4
10
作者 祝树金 赖明勇 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第5期124-128,共5页
采用我国进出口贸易的月度数据序列,首次应用R/S分析方法研究我国的进出口贸易,计算得到了Hurst指数.结论表明,我国的进出口贸易市场存在长期记忆性和分形特征,分数维数分别是1.179 2和1.578 5,这对贸易政策的制定提供了新的启示.
关键词 R/S分析 进出口贸易 长期记忆性 分形
下载PDF
一类分数金融资产价格过程的近似解及其期权定价
11
作者 王继霞 肖晓芳 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第4期70-77,共8页
为了拟合金融资产数据的长记忆性,很多学者利用分数布朗运动驱动的随机微分方程来刻画金融资产价格的变化规律.但是由于分数布朗运动驱动的模型在金融市场中会产生套利机会,这将给研究期权定价问题带来困难.鉴于此,首先采用一类具有半... 为了拟合金融资产数据的长记忆性,很多学者利用分数布朗运动驱动的随机微分方程来刻画金融资产价格的变化规律.但是由于分数布朗运动驱动的模型在金融市场中会产生套利机会,这将给研究期权定价问题带来困难.鉴于此,首先采用一类具有半鞅性质的分数高斯过程对分数布朗运动进行近似,此近似关于L^(2)(Ω)是一致收敛的.然后,利用分数高斯过程对金融资产价格进行统计建模,求得模型近似解的闭式表达式,并以分数阶Langevin模型作为特例,对近似解和原模型解的样本路径进行模拟,展示了二者的近似程度.最后,基于所构建的近似模型,得到了几何平均亚式看涨期权和看跌期权的定价公式. 展开更多
关键词 分数布朗运动 L^(2)近似方法 半鞅 长记忆性 期权定价
下载PDF
Monitoring Mean and Variance Change-Points in Long-Memory Time Series 被引量:2
12
作者 CHEN Zhanshou LI Fuxiao +1 位作者 ZHU Li XING Yuhong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第3期1009-1029,共21页
This paper proposes two ratio-type statistics to sequentially detect mean and variance change-points in the long-memory time series.The limiting distributions of monitoring statistics under the no change-point null hy... This paper proposes two ratio-type statistics to sequentially detect mean and variance change-points in the long-memory time series.The limiting distributions of monitoring statistics under the no change-point null hypothesis,alternative hypothesis as well as change-point misspecified hypothesis are proved.In particular,a sieve bootstrap approximation method is proposed to determine the critical values.Simulations indicate that the new monitoring procedures have better finite sample performance than the available off-line tests when the change-point nears to the beginning time of monitoring,and can discriminate between mean and variance change-point.Finally,the authors illustrate their procedures via two real data sets:A set of annual volume of discharge data of the Nile river,and a set of monthly temperature data of northern hemisphere.The authors find a new variance change-point in the latter data. 展开更多
关键词 Change-point monitoring long-memory time series ratio-type statistic sieve bootstrap
原文传递
Long-Memory and Spurious Breaks in Ecological Experiments
13
作者 Thomas R. Boucher 《Open Journal of Statistics》 2017年第5期768-779,共12页
The impact of long-memory on the Before-After-Control-Impact (BACI) design and a commonly used nonparametric alternative, Randomized Intervention Analysis (RIA), is examined. It is shown the corrections used based on ... The impact of long-memory on the Before-After-Control-Impact (BACI) design and a commonly used nonparametric alternative, Randomized Intervention Analysis (RIA), is examined. It is shown the corrections used based on short-memory processes are not adequate. Long-memory series are also known to exhibit spurious structural breaks that can be mistakenly attributed to an intervention. Two examples from the literature are used as illustrations. 展开更多
关键词 BACI long-memory RIA Short-memory Variance CORRECTIONS
下载PDF
Autoregressive Fractionally Integrated Moving Average-Generalized Autoregressive Conditional Heteroskedasticity Model with Level Shift Intervention 被引量:1
14
作者 Lawrence Dhliwayo Florance Matarise Charles Chimedza 《Open Journal of Statistics》 2020年第2期341-362,共22页
In this paper, we introduce the class of autoregressive fractionally integrated moving average-generalized autoregressive conditional heteroskedasticity?(ARFIMA-GARCH) models with level shift type intervention that ar... In this paper, we introduce the class of autoregressive fractionally integrated moving average-generalized autoregressive conditional heteroskedasticity?(ARFIMA-GARCH) models with level shift type intervention that are capable of capturing three key features of time series: long range dependence, volatility?and level shift. The main concern is on detection of mean and volatility level shift in a fractionally integrated time series with volatility. We will denote such a time series as level shift autoregressive fractionally integrated moving average (LS-ARFIMA) and level shift generalized autoregressive conditional heteroskedasticity (LS-GARCH). Test statistics that are useful to examine if mean and volatility level shifts are present in an autoregressive fractionally integrated moving average-generalized autoregressive conditional heteroskedasticity (ARFIMA-GARCH) model are derived. Quasi maximum likelihood estimation of the model is also considered. 展开更多
关键词 Fractional Differencing long-memory HETEROSCEDASTICITY VOLATILITY Level SHIFT
下载PDF
Modeling Seasonal Fractionally Integrated Autoregressive Moving Average-Generalized Autoregressive Conditional Heteroscedasticity Model with Seasonal Level Shift Intervention
15
作者 Lawrence Dhliwayo Florance Matarise Charles Chimedza 《Open Journal of Statistics》 2020年第5期810-831,共22页
This paper introduces the class of seasonal fractionally integrated autoregressive<span style="font-family:Verdana;"> moving average</span><span style="font-family:Verdana;">-<... This paper introduces the class of seasonal fractionally integrated autoregressive<span style="font-family:Verdana;"> moving average</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">generalized conditional heteroskedastisticty (SARFIMA-</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">GARCH) models, with level shift type intervention that are capable of capturing simultaneously four key features of time series: seasonality, long range dependence, volatility and level shift. The main focus is on modeling seasonal level shift (SLS) in fractionally integrated and volatile processes. A natural extension of the seasonal level shift detection test of the mean for a realization of time series satisfying SLS-SARFIMA and SLS-GARCH models w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> derived. Test statistics that are useful to examine if seasonal level shift in a</span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;"> SARFIMA-GARCH model </span><span style="font-family:Verdana;">is</span><span style="font-family:Verdana;"> statistically plausible were established. Estimation of SLS-SARFIMA and SLS-GARCH parameters w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> also considered.</span> 展开更多
关键词 SEASONALITY Fractional Integration long-memory Level Shift SLS-SARFIMA SLS-GARCH VOLATILITY
下载PDF
基于非参数波动测度的上海股票市场异质性研究 被引量:1
16
作者 李阳泱 李汉东 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期323-327,共5页
利用非参数波动测度——已实现波动和已实现极差波动研究了上海股票市场的异质性现象,发现上海股票市场收益波动率的长记忆性主要是由短期交易者和长期交易者决定,并且已实现极差波动测度对股票收益波动的预测效果要好于已实现波动测度.
关键词 已实现波动 已实现极差波动 异质性 长记忆性
下载PDF
Modelling the dynamics of stock market in the gulf cooperation council countries:evidence on persistence to shocks
17
作者 Heni Boubaker Bassem Saidane Mouna Ben Saad Zorgati 《Financial Innovation》 2022年第1期1252-1273,共22页
This study examines the statistical properties required to model the dynamics of both the returns and volatility series of the daily stock market returns in six Gulf Cooperation Council countries,namely Bahrain,Oman,K... This study examines the statistical properties required to model the dynamics of both the returns and volatility series of the daily stock market returns in six Gulf Cooperation Council countries,namely Bahrain,Oman,Kuwait,Qatar,Saudi Arabia,and the United Arab Emirates,under different financial and economic circumstances.The empiri-cal investigation is conducted using daily data from June 1,2005 to July 1,2019.The analysis is conducted using a set of double long-memory specifications with some significant features such as long-range dependencies,asymmetries in conditional variances,non-linearity,and multiple seasonality or time-varying correlations.Our study indicates that the joint dual long-memory process can adequately estimate long-memory dynamics in returns and volatility.The in-sample diagnostic tests as well as out-of-sample forecasting results demonstrate the prevalence of the Autoregressive Fractionally Integrated Moving Average and Hyperbolic Asymmetric Power Autoregressive Conditional Heteroskedasticity modeling process over other competing models in fitting the first and the second conditional moments of the market returns.Moreover,the empirical results show that the proposed model offers an interesting framework to describe the long-range dependence in returns and seasonal persistence to shocks in conditional volatility and strongly support the estimation of dynamic returns that allow for time-varying correlations.A noteworthy finding is that the long-memory dependencies in the conditional variance processes of stock market returns appear important,asymmetric,and differ in their volatility responses to unexpected shocks.Our evidence suggests that these markets are not completely efficient in processing regional news,thus providing a sound alternative for regional portfolio diversification. 展开更多
关键词 long-memory Volatility process Asymmetric power SEASONALITY Forecast performance Stock market
下载PDF
我国股市波动的典型化特征与动态时变相关性研究
18
作者 王茁宇 王永莲 《科技与管理》 2016年第2期84-90,共7页
利用1996年12月17日至2015年1月5日间我国沪深A、B股的对数收益率数据构建DCC-FIAPARCH模型分析我国股市波动的典型化特征和股市间的动态相关性。研究结果表明:我国股市波动均存在显著的波动聚类、长记忆性和非对称性特征,其中且沪市A... 利用1996年12月17日至2015年1月5日间我国沪深A、B股的对数收益率数据构建DCC-FIAPARCH模型分析我国股市波动的典型化特征和股市间的动态相关性。研究结果表明:我国股市波动均存在显著的波动聚类、长记忆性和非对称性特征,其中且沪市A股的波动聚类特征、深证A股的非对称特征和沪市B股的长记忆性特征相对较为突出。我国沪深股市的A、B股间的动态相关性显示出较强的时变动态特征,波动幅度整体呈现递减的规律,且易受类似金融危机等重大经济金融事件的影响,各类股票综指间的动态相关性由于股权结构、投资主体和市场信息的不同而存在较大的差异。 展开更多
关键词 长记忆性 非对称型 动态条件相关
下载PDF
长记忆下函数型数据非参数回归的M-估计
19
作者 朱东河 凌能祥 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期943-946,共4页
文章根据模型Yi=m(Xi)+iε,i∈Z,其中,Xi取自半度量函数空间,在长记忆过程的条件下,研究函数型回归算子m(x)的非参数M-估计,利用方差分段的方法分别求得各自的收敛,并获得了在长记忆下函数型数据非参数回归M-估计的依概率收敛,以及其相... 文章根据模型Yi=m(Xi)+iε,i∈Z,其中,Xi取自半度量函数空间,在长记忆过程的条件下,研究函数型回归算子m(x)的非参数M-估计,利用方差分段的方法分别求得各自的收敛,并获得了在长记忆下函数型数据非参数回归M-估计的依概率收敛,以及其相应的收敛速度。 展开更多
关键词 函数型数据 长记忆 M-估计
下载PDF
基于CGR的DNA序列的时间序列模型(英文)
20
作者 高洁 蒋丽丽 徐振源 《生物信息学》 2010年第2期156-160,164,共6页
利用DNA序列的混沌游戏表示(chaos game representation,CGR),提出了将2维DNA图谱转化成相应的类谱格式的方法。该方法不仅提供了一个较好的视觉表示,而且可将DNA序列转化成一个时间序列。利用CGR坐标将DNA序列转化成CGR弧度序列,并引... 利用DNA序列的混沌游戏表示(chaos game representation,CGR),提出了将2维DNA图谱转化成相应的类谱格式的方法。该方法不仅提供了一个较好的视觉表示,而且可将DNA序列转化成一个时间序列。利用CGR坐标将DNA序列转化成CGR弧度序列,并引入长记忆ARFIMA(p,d,q)模型去拟合此类序列,发现此类序列中有显著的长相关性且拟合度很好。 展开更多
关键词 时间序列模型 混沌游戏表示(CGR) DNA序列 长记忆 ARFIMA(p d q)模型
下载PDF
上一页 1 2 245 下一页 到第
使用帮助 返回顶部