期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测 被引量:2
1
作者 尹杰 刘博 +1 位作者 孙国兵 钱湘伟 《电工技术学报》 EI CSCD 北大核心 2024年第1期289-302,共14页
针对锂离子电池退化数据噪声大、数据量少以及不同生命时期的退化趋势不同而导致的模型预测精度低、泛化能力差等问题,从数据预处理、预测模型的构建与训练三方面展开研究:首先结合变分自编码器(VAE)和生成对抗网络模型(GAN)构建VAE-GA... 针对锂离子电池退化数据噪声大、数据量少以及不同生命时期的退化趋势不同而导致的模型预测精度低、泛化能力差等问题,从数据预处理、预测模型的构建与训练三方面展开研究:首先结合变分自编码器(VAE)和生成对抗网络模型(GAN)构建VAE-GAN模型生成多组数据,实现电池的退化数据增强;然后结合降噪自编码器(DAE)和长短时记忆(LSTM)神经网络构建DAE-LSTM模型进行数据降噪和容量预测,为了降低模型参数,此过程中的数据降噪和预测共享同一个损失函数;最后先利用生成数据对DAE-LSTM模型进行预训练,再利用真实数据对其进行迁移训练。在CACLE和NASA公开数据集进行性能测试,实验结果表明该文所提方法精度高、鲁棒性强,能够有效提高锂离子电池剩余寿命的预测效果。 展开更多
关键词 锂离子电池 剩余寿命预测 降噪 自编码器 长短时记忆神经网络 迁移学习
下载PDF
顾及停留位置特征提取的个人位置预测方法 被引量:8
2
作者 李帆 夏吉喆 +2 位作者 黄赵 李晓明 李清泉 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第12期1970-1980,共11页
预测居民的未来活动位置与轨迹,为传染病防控、交通疏导、公共安全等城市智慧管理和服务提供主要决策依据。当前的个人位置预测方法往往基于个体的历史轨迹规律模式挖掘与建模进行位置预测,对于个体在不同停留位置的特征信息挖掘不够充... 预测居民的未来活动位置与轨迹,为传染病防控、交通疏导、公共安全等城市智慧管理和服务提供主要决策依据。当前的个人位置预测方法往往基于个体的历史轨迹规律模式挖掘与建模进行位置预测,对于个体在不同停留位置的特征信息挖掘不够充分。为此,提出一种顾及停留位置特征提取的个人位置预测模型。首先,模型基于轨迹数据构建历史轨迹链路,采用位置发现规则将轨迹链路转化为停留位置链路,对停留位置进行空间聚类以构建聚类链路;其次,对不同的停留位置进行特征信息(进入/离开时间、天气状况、土地利用)提取,并提取聚类链路的空间特征;最后,将带有特征信息的链路代入长短期记忆神经网络进行定制集成,并实现个人位置的预测。实验结果表明,基于深圳市志愿者用户23天300余万个轨迹位置数据,本模型用户位置预测的F值在不同时间步长参数下均优于变阶马尔可夫模型(约5.5%增益)和传统N阶马尔可夫模型(约7%增益),引入停留位置特征的模型性能增益约为6.6%。 展开更多
关键词 位置预测 轨迹大数据 特征提取 神经网络 长短期记忆神经网络
原文传递
基于CNN-GCN-BiLSTM的煤矿底板突水量预测模型 被引量:5
3
作者 秋兴国 李娜 《煤炭技术》 CAS 北大核心 2022年第8期84-87,共4页
为了提高煤矿底板突水量预测精度,提出了一种基于CNN-GCN-BiLSTM的煤矿底板突水量预测模型。首先使用二维卷积神经网络(2D-CNN)提取数据局部特征;其次利用图卷积神经网络(GCN)提取数据空间特征;然后通过双向长短时记忆神经网络(BiLSTM)... 为了提高煤矿底板突水量预测精度,提出了一种基于CNN-GCN-BiLSTM的煤矿底板突水量预测模型。首先使用二维卷积神经网络(2D-CNN)提取数据局部特征;其次利用图卷积神经网络(GCN)提取数据空间特征;然后通过双向长短时记忆神经网络(BiLSTM)提取时序数据双向序列特征;最后利用长短时记忆神经网络(LSTM)的长期依赖特性实现对煤矿底板突水量的预测。实验结果显示,与其他6种模型相比,CNN-GCN-BiLSTM模型精度最高,MAE和MSE的值分别为6.85%和2.42%,模型预测结果可为煤矿底板水害防治工作提供重要参考和依据。 展开更多
关键词 底板突水 突水预测 图卷积神经网络 长短时记忆神经网络 卷积神经网络
下载PDF
基于注意力机制的LSTM和ARIMA集成方法在土壤温度中应用 被引量:1
4
作者 耿庆田 赵杨 +2 位作者 李清亮 于繁华 李晓宁 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第10期2973-2981,共9页
为准确分析土壤温度特性问题,提出了基于注意力机制的多通道长短期记忆网络(LSTM)融合ARIMA算法的预测模型。通过提取长短期不同时刻重要时间特征,并利用ARIMA时间序列模型提取线性特征优势更准确预测土壤温度。为验证该模型,本文在瑞... 为准确分析土壤温度特性问题,提出了基于注意力机制的多通道长短期记忆网络(LSTM)融合ARIMA算法的预测模型。通过提取长短期不同时刻重要时间特征,并利用ARIMA时间序列模型提取线性特征优势更准确预测土壤温度。为验证该模型,本文在瑞士两个气象站(Laegern和Fluehli气象站)测试了未来6、12和24 h内,同时间土壤深度5、10和15 cm下土壤温度的均方根误差、平均绝对误差、均方误差和决定系数,并以4个评价指标进行验证。与自回归综合移动平均模型、LSTM和全连接网络相比,本文模型具有最优性能,尤其在未来6 h内对Fluehli站(10 cm土壤深度)土壤温度模型中改善最为显著;取得了最高的相对决定系数值0.9965,最低的均方根误差为0.3414,平均绝对误差为0.2310,均方误差为0.1165。因此,本文模型可以作为备选土壤温度估计的替代方法。 展开更多
关键词 机器学习 神经网络 土壤温度建模 注意力机制 长短期记忆
原文传递
基于Transformer动态场景信息生成对抗网络的行人轨迹预测方法 被引量:2
5
作者 裴炤 邱文涛 +2 位作者 王淼 马苗 张艳宁 《电子学报》 EI CAS CSCD 北大核心 2022年第7期1537-1547,共11页
行人轨迹预测是视频监控的重要组成部分,因现有方法未充分利用场景特征信息造成其预测轨迹不符合生活常识,导致行人轨迹预测精度较低出现明显偏离真实轨迹的情况.针对上述不足本文提出一种基于Transformer动态场景信息生成对抗网络(Gene... 行人轨迹预测是视频监控的重要组成部分,因现有方法未充分利用场景特征信息造成其预测轨迹不符合生活常识,导致行人轨迹预测精度较低出现明显偏离真实轨迹的情况.针对上述不足本文提出一种基于Transformer动态场景信息生成对抗网络(Generative Adversarial Network,GAN)的行人轨迹预测方法.该方法利用动态场景特征提取模块的卷积神经网络(Convolutional Neural Networks,CNN)模型对目标行人的动态场景信息进行特征提取,同时生成器网络中的编码器利用Transformer对行人的社会交互信息特征以及轨迹信息特征进行建模.在ETH和UCY数据集上的实验结果表明,与Social GAN模型相比,本文方法在多个场景下的平均位移误差准确率提高了25.61%,最终位移误差准确率提高了38.44%. 展开更多
关键词 行人轨迹预测 生成对抗网络 转换器 深度学习 长短期记忆网络
下载PDF
基于BLSTM-AM模型的TBM稳定段掘进参数预测 被引量:24
6
作者 周小雄 龚秋明 +2 位作者 殷丽君 许弘毅 班超 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2020年第S02期3505-3515,共11页
隧道掘进机(TBM)掘进数据的上升段为实时岩体条件感知和掘进性能参数预测提供了丰富的信息。提出一种融合注意力机制的双向长短时记忆网络,来实现TBM掘进稳定段的性能参数预测。在所提出的模型中,4个主要参数的时间序列数据作为主要输... 隧道掘进机(TBM)掘进数据的上升段为实时岩体条件感知和掘进性能参数预测提供了丰富的信息。提出一种融合注意力机制的双向长短时记忆网络,来实现TBM掘进稳定段的性能参数预测。在所提出的模型中,4个主要参数的时间序列数据作为主要输入来提取岩机作用关系,稳定段的推进速度和刀盘转速作为辅助输入来考虑主司机的控制行为,模型输出推力和扭矩预测值。不同于传统的预测模型,所提出的模型不依赖于地质参数,通过自动学习上升段的特征来建立控制参数与预测性能参数之间的映射关系。模型建立过程,采用多项数据处理技术来修正异常值、过滤噪声及归一化等,并提出了基于扭矩时序曲线来识别TBM上升段和稳定段的方法。依托于吉林引松供水隧洞工程,验证了该模型的有效性和准确性。结果表明,所建模型有较好的预测效果,可辅助于类似地质条件的TBM智能化施工。 展开更多
关键词 地下工程 硬岩掘进机 掘进参数预测 双向长短时记忆网络 注意力机制 智能化施工
原文传递
基于双向长短期记忆深度学习模型的短期风功率预测方法研究 被引量:11
7
作者 谭敏戈 蒋勃 +4 位作者 王建渊 邓亚平 冯雅琳 蒋琪 贾灵贤 《电网与清洁能源》 2020年第6期85-91,共7页
风功率的准确预测对电力系统的规划、调度运行等方面均具有重要意义。该文以风功率预测误差最小为目标,提出了一种基于双向长短期记忆深度学习模型的短期风功率预测方法,包括3层(输入层、隐含层和输出层)网络结构的详细设计以及网络训... 风功率的准确预测对电力系统的规划、调度运行等方面均具有重要意义。该文以风功率预测误差最小为目标,提出了一种基于双向长短期记忆深度学习模型的短期风功率预测方法,包括3层(输入层、隐含层和输出层)网络结构的详细设计以及网络训练过程。输入层负责对原始数据进行预处理以满足网络输入要求,隐含层采用双向长短期记忆单元构建以提取输入数据的非线性特征,输出层提供预测结果,网络训练采用Adam优化方法。在此基础上,基于实际风电场采集数据为算例,对该文所提出模型进行训练与测试,验证了该文所提方法的可行性与优越性。 展开更多
关键词 风功率预测 数值天气预报 深度学习 双向长短期记忆神经网络
下载PDF
基于PSO-LSTM的质子交换膜燃料电池退化趋势预测 被引量:9
8
作者 高金武 贾志桓 +1 位作者 王向阳 邢浩 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第9期2192-2202,共11页
提出了一种基于粒子群优化(PSO)算法的长短期记忆网络(LSTM)方法,对质子交换膜燃料电池(PEMFC)的电堆电压进行了退化预测。首先,分析了PEMFC的退化机理。然后,应用LSTM建立了电压退化预测模型,并采用Dropout层来防止过拟合以提高模型的... 提出了一种基于粒子群优化(PSO)算法的长短期记忆网络(LSTM)方法,对质子交换膜燃料电池(PEMFC)的电堆电压进行了退化预测。首先,分析了PEMFC的退化机理。然后,应用LSTM建立了电压退化预测模型,并采用Dropout层来防止过拟合以提高模型的泛化能力。此外,使用PSO算法优化LSTM方法中的初始学习率和Dropout概率以提升预测效果。最后,使用IEEE 2014 Data Challenge Data的燃料电池实际老化数据进行验证。结果表明,本文方法可以精确地预测燃料电池的退化,相比于传统的LSTM方法,预测精度提升了50%。 展开更多
关键词 自动控制技术 退化预测 燃料电池 深度学习 长短期记忆网络 粒子群优化
原文传递
基于变分模态分解改进生成对抗网络的短期风电功率预测
9
作者 江善和 李伟 +1 位作者 徐小艳 王德凯 《综合智慧能源》 CAS 2024年第2期28-35,共8页
风电功率的可预测性和预测准确性取得了一定的研究成果,但风电数据中气象和功率的强非线性制约了短期预测精度的进一步提高,提高短期风电功率预测的精度已成为研究的热点与难点。针对风电数据非线性且非稳定的特点,基于分解思想提出一... 风电功率的可预测性和预测准确性取得了一定的研究成果,但风电数据中气象和功率的强非线性制约了短期预测精度的进一步提高,提高短期风电功率预测的精度已成为研究的热点与难点。针对风电数据非线性且非稳定的特点,基于分解思想提出一种基于变分模态分解改进生成对抗网络的短期风电功率预测方法。该方法使用变分模态分解分散风电数据中的非线性,将复杂序列的预测任务转化为多个较为简单序列的预测任务;设计了激活函数和损失函数,解决传统生成对抗网络模型不稳定问题,并对所设计激活函数的关键参数进行了分析。Bengaluru风电场某风机数据的算例测试表明,所提方法取得了较好的预测结果,其均方误差相比长短期记忆网络和变分模态分解-长短记忆网络方法分别下降了79.65%和51.83%。 展开更多
关键词 短期风电功率预测 变分模态分解 生成对抗网络 长短期记忆神经网络 激活函数
下载PDF
结合注意力机制的循环神经网络复述识别模型 被引量:6
10
作者 李旭 姚春龙 +1 位作者 范丰龙 于晓强 《控制与决策》 EI CSCD 北大核心 2021年第1期152-158,共7页
传统基于深度学习的复述识别模型通常以关注文本表示为核心,忽略了对多粒度交互特征的挖掘与匹配.为此,建模文本交互空间,分别利用双向长短时记忆网络对两个候选复述句按条件编码,基于迭代隐状态的输出,通过逐词软对齐的方式从词、短语... 传统基于深度学习的复述识别模型通常以关注文本表示为核心,忽略了对多粒度交互特征的挖掘与匹配.为此,建模文本交互空间,分别利用双向长短时记忆网络对两个候选复述句按条件编码,基于迭代隐状态的输出,通过逐词软对齐的方式从词、短语、句子等多个粒度层次推理并获取句子对的语义表示,最后综合不同视角的语义表达利用softmax实现二元分类.为解决复述标注训练语料不足,在超过580000句子对的数据集上利用语言建模任务对模型参数无监督预训练,再使用预训练好的参数在标准数据集上有监督微调.与先前最佳的神经网络模型相比,所提出模型在标准数据集MSRP上准确率提高2.96%,F1值改善2%.所提出模型综合文本全局和局部匹配信息,多粒度、多视角地描述文本交互匹配模式,能够降低对人工特征工程的需求,具有良好的实用性. 展开更多
关键词 自然语言处理 复述识别 循环神经网络 双向长短时记忆 注意力机制 无监督预训练
原文传递
消费行为数据采集平台的安全保障与预测模型研究
11
作者 李健俊 汪华文 +1 位作者 董惠良 陈翔 《信息安全研究》 CSCD 北大核心 2024年第7期649-657,共9页
依据用户浏览记录等信息进行兴趣爱好的预测并进行合理推荐,已成为诸多销售平台优化用户体验的常用手段,而用户信息安全问题自然也成了各大平台面临的一大挑战.提出一种基于内生安全的消费行为数据采集与分析平台,通过采集用户数据,使... 依据用户浏览记录等信息进行兴趣爱好的预测并进行合理推荐,已成为诸多销售平台优化用户体验的常用手段,而用户信息安全问题自然也成了各大平台面临的一大挑战.提出一种基于内生安全的消费行为数据采集与分析平台,通过采集用户数据,使用基于长短时记忆网络的预测模型,精准预测未来销售流量数据.在数据安全性方面,平台使用基于内生安全的拟态云WAF,通过动态选择算法、异构执行体和裁决算法3种核心技术为整个数据平台提供了自主可控的安全保障,并利用基于Sketch的网络测量技术对异常流量进行了检测.此外,平台融合了数据备份和恢复、加密存储、数据传输加密技术,并对重要的数据采取分类存储、访问控制等措施.多项对比实验验证表明,用于中烟销售流量的预测平台相较于目前提出的多种技术在预测准确度和数据安全方面都有显著提升,可为企业销量预测提供一种合理可行的解决方案. 展开更多
关键词 销量预测 长短时记忆网络 内生安全 拟态云 数据采集
下载PDF
基于时空关联度加权的LSTM短时交通速度预测 被引量:6
12
作者 刘易诗 关雪峰 +2 位作者 吴华意 曹军 张娜 《地理信息世界》 2020年第1期41-47,共7页
提出一种基于时空关联度加权的长短期记忆网络(Long Short-Term Memory,LSTM)短时交通速度预测模型。该模型结合综合动态时间规整(Summation Dynamic Time Warping,SDTW)和拓扑邻接关系设计了一种路段速度序列之间时空关联程度的度量方... 提出一种基于时空关联度加权的长短期记忆网络(Long Short-Term Memory,LSTM)短时交通速度预测模型。该模型结合综合动态时间规整(Summation Dynamic Time Warping,SDTW)和拓扑邻接关系设计了一种路段速度序列之间时空关联程度的度量方法,然后基于该度量值对路段速度历史观测值进行加权,进而使用LSTM从加权观测序列中提取路段速度的时空变化特征,实现对短时交通速度的预测。实验表明,交通速度预测模型预测结果相比传统的ARIMA模型、SVR模型以及LSTM模型均有提升,实现了更高精度的速度预测。 展开更多
关键词 交通速度预测 时空关联度 动态时间规整 深度学习 长短期记忆网络
下载PDF
考虑数据分布偏移的短期居民净负荷预测方法
13
作者 王瑞临 赵健 +1 位作者 孙智卿 宣羿 《电力建设》 CSCD 北大核心 2024年第2期90-101,共12页
新能源发电的高不确定性导致净负荷的数据分布偏移更加严重。数据分布偏移导致模型在历史数据中学习到的特征信息不再完全适用于未来数据,从而给净负荷预测(net load forecasting,NLF)带来了挑战。因此,考虑到净负荷中更严重的数据分布... 新能源发电的高不确定性导致净负荷的数据分布偏移更加严重。数据分布偏移导致模型在历史数据中学习到的特征信息不再完全适用于未来数据,从而给净负荷预测(net load forecasting,NLF)带来了挑战。因此,考虑到净负荷中更严重的数据分布偏移问题,提出了一种基于不变风险最小化-不确定性加权-长短期记忆神经网络(long short-term memory neural network,LSTM)的短期居民净负荷预测方法,以提升净负荷预测精度。首先,通过不变风险最小化(invariant risk minimization,IRM)建立了一个双目标问题,包括准确预测和学习跨不同数据分布的不变特征。其次,通过长短期记忆神经网络(long short-term memory neural network,LSTM)处理时间序列数据的非线性特征。然后,通过基于不确定性加权(uncertainty weighting,UW)的目标平衡机制避免过度实现任一目标。此外,通过引入分位数回归将所提方法扩展到概率预测。最后,通过基于澳大利亚Ausgrid公司提供的真实居民电表数据从确定性预测结果、概率预测结果、不同数据分布偏移程度和不同光伏渗透率等多个维度验证了所提方法的有效性。 展开更多
关键词 短期居民净负荷预测 数据分布偏移 不变风险最小化 长短期记忆神经网络 不确定性加权
原文传递
考虑数据分解和进化捕食策略的BiLSTM短期光伏发电功率预测
14
作者 焦丕华 蔡旭 +2 位作者 王乐乐 陈佳佳 曹云峰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期435-442,共8页
提出一种考虑数据分解和进化捕食策略的双向长短期记忆网络(BiLSTM)短期光伏发电功率预测模型。首先,针对大量高频分量且频率成分复杂的原始光伏发电功率,通过数据分解理论,提出互补集合经验模态分解(CEEMD)与矩阵运算的奇异值分解(SVD... 提出一种考虑数据分解和进化捕食策略的双向长短期记忆网络(BiLSTM)短期光伏发电功率预测模型。首先,针对大量高频分量且频率成分复杂的原始光伏发电功率,通过数据分解理论,提出互补集合经验模态分解(CEEMD)与矩阵运算的奇异值分解(SVD)融合的(SVD-CEEMD-SVD,SCS)方法,实现光伏发电功率数据的二次降噪。然后,建立进化捕食策略(EPPS)和BiLSTM的组合预测模型,以更好地挖掘模型的内在特征,提升功率预测精度。最后,以山东某地区实际光伏电站为例,验证模型在滤除光伏发电功率噪声和提升预测精度方面的有效性。 展开更多
关键词 光伏发电 预测 奇异值分解 进化捕食策略 双向长短期记忆网络
下载PDF
基于优化A-BiLSTM的滚动轴承故障诊断
15
作者 余萍 赵康 曹洁 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期2156-2166,共11页
为提高超参数设置的效率及其与模型的适配性,改善人工设置模型参数的高成本和低效率问题,提出一种基于蜜獾算法(Honey badger algorithm,HBA)优化注意力双向长短时记忆网络(HBA-A-BiLSTM)的滚动轴承故障诊断方法。首先,通过HBA对A-BiLST... 为提高超参数设置的效率及其与模型的适配性,改善人工设置模型参数的高成本和低效率问题,提出一种基于蜜獾算法(Honey badger algorithm,HBA)优化注意力双向长短时记忆网络(HBA-A-BiLSTM)的滚动轴承故障诊断方法。首先,通过HBA对A-BiLSTM模型进行最优超参数组合搜寻,然后基于最优超参数下的A-BiLSTM模型进行故障诊断性能测试。最后,基于不同工况的数据集进行模型泛化能力测试。采用CWRU数据集对所提方法的故障诊断效果进行验证,利用诊断精度以及混淆矩阵进行评价。实验结果表明,与其他群智能优化算法相比,蜜獾算法搜索全局性能好,收敛速度快,优化后的最终模型的故障诊断准确率达到了99.5%,具有良好的效果,且在不同工况下能够实现稳定、准确的故障诊断性能,泛化能力强。 展开更多
关键词 故障诊断 蜜獾算法 参数优化 双向长短时记忆网络 注意力机制
原文传递
基于改进WTD-SVD-WOA-LSTM方法的海杂波背景下小目标检测
16
作者 祝健 尚尚 +2 位作者 石依山 乔铁柱 刘强 《电讯技术》 北大核心 2024年第8期1219-1227,共9页
针对海面小目标因体积小、移速慢而导致的检测难问题,提出了一种改进WTD-SVD-WOA-LSTM检测方法。首先,利用改进小波阈值法(Wavelet Threshold Denoising, WTD)结合优化奇异值分解(Singular Value Decomposition, SVD)法对海杂波去噪;然... 针对海面小目标因体积小、移速慢而导致的检测难问题,提出了一种改进WTD-SVD-WOA-LSTM检测方法。首先,利用改进小波阈值法(Wavelet Threshold Denoising, WTD)结合优化奇异值分解(Singular Value Decomposition, SVD)法对海杂波去噪;然后,通过改进鲸鱼优化算法(Whale Optimization Algorithm, WOA)对长短期记忆神经网络(Long Short-term Memory, LSTM)的超参数选优,获得最佳预测模型;最后,根据预测误差均方根值进行小目标检测。利用冰区多参数成像X频段雷达(Ice Multiparameter Imaging X-band Radar, IPIX)实测海杂波数据进行验证,所提方法相较于单一LSTM检测方法,检测阈值区间更广,检测能力至少提高了16%。 展开更多
关键词 小目标检测 海杂波去噪 改进鲸鱼优化算法 长短期记忆神经网络
下载PDF
结合BiLSTM和注意力机制的视频行人再识别 被引量:6
17
作者 余晨阳 温林凤 +1 位作者 杨钢 王玉涛 《中国图象图形学报》 CSCD 北大核心 2019年第10期1703-1710,共8页
目的跨摄像头跨场景的视频行人再识别问题是目前计算机视觉领域的一项重要任务。在现实场景中,光照变化、遮挡、观察点变化以及杂乱的背景等造成行人外观的剧烈变化,增加了行人再识别的难度。为提高视频行人再识别系统在复杂应用场景中... 目的跨摄像头跨场景的视频行人再识别问题是目前计算机视觉领域的一项重要任务。在现实场景中,光照变化、遮挡、观察点变化以及杂乱的背景等造成行人外观的剧烈变化,增加了行人再识别的难度。为提高视频行人再识别系统在复杂应用场景中的鲁棒性,提出了一种结合双向长短时记忆循环神经网络(BiLSTM)和注意力机制的视频行人再识别算法。方法首先基于残差网络结构,训练卷积神经网络(CNN)学习空间外观特征,然后使用BiLSTM提取双向时间运动信息,最后通过注意力机制融合学习到的空间外观特征和时间运动信息,以形成一个有判别力的视频层次表征。结果在两个公开的大规模数据集上与现有的其他方法进行了实验比较。在iLIDS-VID数据集中,与性能第2的方法相比,首位命中率Rank1指标提升了4.5%;在PRID2011数据集中,相比于性能第2的方法,首位命中率Rank1指标提升了3.9%。同时分别在两个数据集中进行了消融实验,实验结果验证了所提出算法的有效性。结论提出的结合BiLSTM和注意力机制的视频行人再识别算法,能够充分利用视频序列中的信息,学习到更鲁棒的序列特征。实验结果表明,对于不同数据集,均能显著提升识别性能。 展开更多
关键词 计算机视觉 行人再识别 卷积神经网络 双向长短时记忆循环神经网络(BiLSTM) 注意力机制
原文传递
基于心电长时RR间期序列的心房颤动检测 被引量:1
18
作者 方东申 叶琪瑶 +2 位作者 石少波 刘涛 李立 《中国医学物理学杂志》 CSCD 2023年第8期1009-1015,共7页
为解决当前深度学习模型进行心房颤动检测泛化能力差的问题,提出了一种基于长时RR间期的心房颤动检测算法。基于心电信号的一维时序特性以及心房颤动的特殊RR间期,设计了CNN与LSTM结合的深度学习模型,深度挖掘长时RR序列的时间与空间特... 为解决当前深度学习模型进行心房颤动检测泛化能力差的问题,提出了一种基于长时RR间期的心房颤动检测算法。基于心电信号的一维时序特性以及心房颤动的特殊RR间期,设计了CNN与LSTM结合的深度学习模型,深度挖掘长时RR序列的时间与空间特征,使得它能够在未知数据集上取得良好的结果。使用MIT-BIH心房颤动数据集的全部可用样本划分训练、验证与盲法测试集(3名个体)。通过10倍交叉验证后在盲法测试集上的准确率为99.11%、敏感性为98.86%、特异性为99.47%、阳性预测率为99.62%、F1分数为99.24%。模型与现有方法进行了对比,证实所提模型用于心房颤动检测的可行性,能够有效识别出未知数据集的心房颤动病例,泛化能力强。 展开更多
关键词 深度学习 心房颤动 心电信号 RR间期 卷积神经网络 长短时记忆网络
下载PDF
基于多层长短期记忆神经网络的用水量预测
19
作者 王健 刘丽 +1 位作者 查淳膺 陈国炜 《水电能源科学》 北大核心 2023年第12期24-27,共4页
及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆... 及时准确的居民用水量预测对供水系统的设计和运行管理至关重要。长短期记忆神经网络(LSTM)是一种有效的基于数据驱动的用水量预测模型,但其通常依赖于大量的参数设置。因此,在LSTM模型基础上,通过叠加时间分布模块,提出多层长短期记忆神经网络模型(MLSTM)。与LSTM模型对比分析表明,MLSTM模型具有较低复杂度和更高的预测精度,尤其对于高峰期用水量预测(M_(MAPE)值降低约60%),且受外部环境条件(如天气)的影响较小。 展开更多
关键词 居民用水量 长短期记忆神经网络 时间分布模块 多层长短期记忆神经网络 预测精度
下载PDF
基于MIC-LSTM的盾构施工地表变形动态预测 被引量:5
20
作者 李增良 《隧道建设(中英文)》 CSCD 北大核心 2021年第2期199-205,共7页
在盾构施工过程中准确预测施工引起的地表变形,对于保障盾构施工的顺利掘进具有重要意义。基于此,提出盾构施工地表变形MIC-LSTM动态预测模型。首先,确定影响地表变形的主要因素,并采用最大信息系数法(MIC,maximal information coeffici... 在盾构施工过程中准确预测施工引起的地表变形,对于保障盾构施工的顺利掘进具有重要意义。基于此,提出盾构施工地表变形MIC-LSTM动态预测模型。首先,确定影响地表变形的主要因素,并采用最大信息系数法(MIC,maximal information coefficient)确定各个影响因素和地表变形之间的相关程度,进而对各个影响因素赋权;其次,将赋权后的各个影响因素和盾构中心处过去最近10个监测时刻的地表变形数据作为输入变量、未来3个监测时刻的变形数据作为输出变量来构建长短期记忆(LSTM,long short-term memory)神经网络动态预测模型;最后,为验证所构建的MIC-LSTM动态预测模型的实用性,依托昆明地铁5号线盾构施工项目,将预测结果与LSTM、RNN(recurrent neural network)以及BP(back propagation)神经网络的预测结果进行对比。研究结果表明:所构建的盾构施工地表变形动态预测模型具有较高的预测精度。 展开更多
关键词 地铁隧道 盾构 地表变形 动态预测 最大信息系数 长短期记忆神经网络
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部