期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于无意调相特性的雷达辐射源个体识别 被引量:13
1
作者 秦鑫 黄洁 +1 位作者 王建涛 陈世文 《通信学报》 EI CSCD 北大核心 2020年第5期104-111,共8页
针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法。首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;... 针对脉内无意调相实现雷达辐射源个体识别时存在的分类模型性能不佳的问题,提出了一种长短时记忆加全卷积网络的雷达辐射源个体识别方法。首先给出了脉内信号相位的简化观测模型,并对观测相位序列进行去斜处理,提取无意调相的含噪估计;然后利用贝塞尔曲线拟合无意调相,降低噪声的影响,获得无意调相更为精确的描述;最后利用长短时记忆加全卷积网络提取无意调相序列的联合特征,实现雷达辐射源个体自动识别。仿真实验以及实测数据实验均验证了所提算法的可行性与有效性,实验结果表明,所提算法识别正确率高、耗时短。 展开更多
关键词 雷达辐射源个体识别 无意调相 贝塞尔曲线 深度学习 长短时记忆加全卷积网络
下载PDF
基于LSTM-SAFCN模型的生物质锅炉NO_(x)排放浓度预测
2
作者 何德峰 刘明裕 +2 位作者 孙芷菲 王秀丽 李廉明 《高技术通讯》 CAS 北大核心 2024年第1期92-100,共9页
针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓... 针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓度预测的影响;其次融合自注意力机制与长短时记忆-全卷积神经网络(LSTM-FCN)进行特征提取与预测建模,该拓展方法能够同时兼顾时间序列数据的局部细节与长期趋势特征;最后,利用生物质热电联产系统的实际运行数据验证了所提算法的有效性。 展开更多
关键词 生物质锅炉 NO_(x)排放浓度预测 经验模态分解 长短时记忆-全卷积神经网络(LSTM-FCN) 自注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部