论文基于2003-2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件...论文基于2003-2014年水文资料,采用长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了汉江上游安康站日径流预测模型,评价了不同输入条件下日径流预测的精度。结果表明:当预见期为1 d时,在仅以安康站前期日径流量作为输入的条件下,LSTM模型在训练期和检验期的效率系数分别达到0.68和0.74;如再将流域前期面雨量和上游石泉站前期日径流量加入LSTM网络作为输入变量,安康站日径流量预测效果将更好,训练期和检验期的效率系数最高可达到0.83和0.84,均方根误差也有显著削减,且对主要洪峰流量的预测能力也有一定提高。此外,LSTM可以有效避免过拟合等问题,具有较好的泛化性能。但当预见期从1 d延长至2、3 d时,LSTM的预测精度显著降低。展开更多
为满足大电网主动防御对算法速度和精度的要求,提出基于长短期记忆(long short term memory,LSTM)网络的电网动态轨迹趋势预测方法。首先,针对电压时序相轨迹的几何特征,提取节点状态的时序演进规律,快速辨识系统发电机运动的同趋性;其...为满足大电网主动防御对算法速度和精度的要求,提出基于长短期记忆(long short term memory,LSTM)网络的电网动态轨迹趋势预测方法。首先,针对电压时序相轨迹的几何特征,提取节点状态的时序演进规律,快速辨识系统发电机运动的同趋性;其次,基于LSTM快速预测等值机系统的受扰轨迹;最后依据扩展等面积准则计算切机量,实现暂态功角稳定的紧急控制。IEEE 39系统算例验证了方法的有效性,该方法无需复杂计算、耗时短,具有较好的工程应用价值。展开更多
准确把握北京市场鸡蛋价格波动特征和规律,及时预测鸡蛋价格波动趋势,不仅是农业进入新发展阶段的首都"菜篮子"工程建设的需要,而且有利于社会经济的稳定发展。该文选取北京市月度鸡蛋价格作为试验数据,在对北京市鸡蛋价格历...准确把握北京市场鸡蛋价格波动特征和规律,及时预测鸡蛋价格波动趋势,不仅是农业进入新发展阶段的首都"菜篮子"工程建设的需要,而且有利于社会经济的稳定发展。该文选取北京市月度鸡蛋价格作为试验数据,在对北京市鸡蛋价格历史数据分析的基础上,根据鸡蛋价格序列的非线性、季节性和周期性特征,提出一种基于时间序列季节性分解(Seasonal-trend Decomposition Procedure Based on Loess,STL)和长短期记忆网络(Long-short Term Memory,LSTM)组合的鸡蛋价格预测模型。通过采用LSTM模型实现对由STL方法分解的鸡蛋价格波动成分的趋势成分及剩余成分和用季节朴素方法(Seasonal-na?ve, Sna?ve)对鸡蛋价格波动的季节成分分别进行预测,可以获取未来鸡蛋价格的综合预测值。研究结果表明:2000-2018年北京市鸡蛋价格在整体呈现上升趋势,且存在"春低秋高"的季节性和随机波动特征;该研究构建的STL-LSTM模型在预测步长分别为1、3、6时的均方根误差分别为0.19、0.33、0.43;平均绝对百分比误差分别为1.91、3.53、4.58,均优于长短期记忆网络、支持向量回归(Support Vector Regression,SVR)和差分整合移动平均自回归(Autoregressive Integrated Moving Average Model,ARIMA)模型,可以为预测预警北京市场鸡蛋价格异常波动情况、为行业和政府主管部门保障北京市场鸡蛋供应决策提供参考依据。展开更多
传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-l...传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-long short term memory,GCN-LSTM)的时空预测算法。该算法首先通过建立图模型,描述地域分布的电力市场数据,并使用图卷积神经网络,提取所研究区域和周围地区传导到域内的域外信息;其次,将不同时刻图卷积神经网络提取到的信息构成时间序列,输入长短时循环网络,从而对日前市场边际电价进行预测。利用北欧电力交易所Nord Pool的运营数据进行算例分析,通过与对照算法对比,该算法具有更好的预测精准度和普适性。展开更多
在数据库负载管理、性能调优过程中,开销预测模型是提高其效率的关键技术.首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销;其次,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中...在数据库负载管理、性能调优过程中,开销预测模型是提高其效率的关键技术.首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销;其次,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中开销模型生成的开销;由于查询计划结构的复杂性,现有研究更多地使用了笼统的查询信息,而很少利用查询计划中操作层面的信息,并依据这些信息来获得开销模型.为了减少负载管理的复杂性,提出了基于循环神经网络的精细模型来预测查询开销,以查询计划中的操作行为及其实际运行时间作为特征提取的来源.特别地,考虑到查询计划结构的复杂性,采用一种特殊的循环神经网络——长短期记忆(long-short term memory,简称LSTM).给一个特定的查询计划,在该计划实际执行之前,模型就能产生其预测的执行时间区间.这会比现有数据库的查询优化器产生的开销预估结果(任意单位)更具有参考性,也优于需要在执行开始之后才能预测的查询进度指示器.所提方法预测查询执行时间,可以解决数据库负载管理中的关键问题.通过实验验证,模型的正确率高于71%,在一定程度上证明了方法的可行性.展开更多
文摘为满足大电网主动防御对算法速度和精度的要求,提出基于长短期记忆(long short term memory,LSTM)网络的电网动态轨迹趋势预测方法。首先,针对电压时序相轨迹的几何特征,提取节点状态的时序演进规律,快速辨识系统发电机运动的同趋性;其次,基于LSTM快速预测等值机系统的受扰轨迹;最后依据扩展等面积准则计算切机量,实现暂态功角稳定的紧急控制。IEEE 39系统算例验证了方法的有效性,该方法无需复杂计算、耗时短,具有较好的工程应用价值。
文摘准确把握北京市场鸡蛋价格波动特征和规律,及时预测鸡蛋价格波动趋势,不仅是农业进入新发展阶段的首都"菜篮子"工程建设的需要,而且有利于社会经济的稳定发展。该文选取北京市月度鸡蛋价格作为试验数据,在对北京市鸡蛋价格历史数据分析的基础上,根据鸡蛋价格序列的非线性、季节性和周期性特征,提出一种基于时间序列季节性分解(Seasonal-trend Decomposition Procedure Based on Loess,STL)和长短期记忆网络(Long-short Term Memory,LSTM)组合的鸡蛋价格预测模型。通过采用LSTM模型实现对由STL方法分解的鸡蛋价格波动成分的趋势成分及剩余成分和用季节朴素方法(Seasonal-na?ve, Sna?ve)对鸡蛋价格波动的季节成分分别进行预测,可以获取未来鸡蛋价格的综合预测值。研究结果表明:2000-2018年北京市鸡蛋价格在整体呈现上升趋势,且存在"春低秋高"的季节性和随机波动特征;该研究构建的STL-LSTM模型在预测步长分别为1、3、6时的均方根误差分别为0.19、0.33、0.43;平均绝对百分比误差分别为1.91、3.53、4.58,均优于长短期记忆网络、支持向量回归(Support Vector Regression,SVR)和差分整合移动平均自回归(Autoregressive Integrated Moving Average Model,ARIMA)模型,可以为预测预警北京市场鸡蛋价格异常波动情况、为行业和政府主管部门保障北京市场鸡蛋供应决策提供参考依据。
文摘传统电价预测往往采用基于时间序列的时域预测方法,未能充分利用电力市场的地域信息,忽略了跨区域输电条件下影响区内电价的域外因素,为进一步提升电价预测精度提出一种基于图卷积神经网络与长短时记忆网络(graph convolution network-long short term memory,GCN-LSTM)的时空预测算法。该算法首先通过建立图模型,描述地域分布的电力市场数据,并使用图卷积神经网络,提取所研究区域和周围地区传导到域内的域外信息;其次,将不同时刻图卷积神经网络提取到的信息构成时间序列,输入长短时循环网络,从而对日前市场边际电价进行预测。利用北欧电力交易所Nord Pool的运营数据进行算例分析,通过与对照算法对比,该算法具有更好的预测精准度和普适性。
文摘在数据库负载管理、性能调优过程中,开销预测模型是提高其效率的关键技术.首先,由于数据库系统的复杂性和计算机资源的竞争,很难精确地估计不同操作的开销;其次,现有的研究大多没有真正预测查询的执行时间,而是预测了类似查询优化器中开销模型生成的开销;由于查询计划结构的复杂性,现有研究更多地使用了笼统的查询信息,而很少利用查询计划中操作层面的信息,并依据这些信息来获得开销模型.为了减少负载管理的复杂性,提出了基于循环神经网络的精细模型来预测查询开销,以查询计划中的操作行为及其实际运行时间作为特征提取的来源.特别地,考虑到查询计划结构的复杂性,采用一种特殊的循环神经网络——长短期记忆(long-short term memory,简称LSTM).给一个特定的查询计划,在该计划实际执行之前,模型就能产生其预测的执行时间区间.这会比现有数据库的查询优化器产生的开销预估结果(任意单位)更具有参考性,也优于需要在执行开始之后才能预测的查询进度指示器.所提方法预测查询执行时间,可以解决数据库负载管理中的关键问题.通过实验验证,模型的正确率高于71%,在一定程度上证明了方法的可行性.