Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependenc...With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.展开更多
针对潜艇鱼雷发射控制系统,提出一套基于系统理论过程分析(system theoretic process analysis,STPA)的安全性分析方法.借助XSTAMPP安全工程平台,以鱼雷发射阶段解脱武器制动动作为案例,利用所提方法进行了安全性分析.同时改进传统STPA...针对潜艇鱼雷发射控制系统,提出一套基于系统理论过程分析(system theoretic process analysis,STPA)的安全性分析方法.借助XSTAMPP安全工程平台,以鱼雷发射阶段解脱武器制动动作为案例,利用所提方法进行了安全性分析.同时改进传统STPA致因场景分析模型,生成精细化的系统安全要求,并利用线性时序逻辑(linear temporal logic,LTL)对生成的安全要求进行规范化描述,克服了传统STPA分析结果使用自然语言描述的局限性,为进一步的模型安全性验证提供理论支撑,同时为系统操作员提供辅助决策.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
基金supported by the National Natural Science Foundation of China (No. 61502043, No. 61132001)Beijing Natural Science Foundation (No. 4162042)BeiJing Talents Fund (No. 2015000020124G082)
文摘With the growing popularity of data-intensive services on the Internet, the traditional process-centric model for business process meets challenges due to the lack of abilities to describe data semantics and dependencies, resulting in the inflexibility of the design and implement for the processes. This paper proposes a novel data-aware business process model which is able to describe both explicit control flow and implicit data flow. Data model with dependencies which are formulated by Linear-time Temporal Logic(LTL) is presented, and their satisfiability is validated by an automaton-based model checking algorithm. Data dependencies are fully considered in modeling phase, which helps to improve the efficiency and reliability of programming during developing phase. Finally, a prototype system based on j BPM for data-aware workflow is designed using such model, and has been deployed to Beijing Kingfore heating management system to validate the flexibility, efficacy and convenience of our approach for massive coding and large-scale system management in reality.