期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Voronoi图划分实现位置数据发布隐私保护
1
作者 薛佳楣 张磊 玄子玉 《计算机工程与应用》 CSCD 北大核心 2019年第10期121-126,共6页
针对位置这一特殊数据发布的隐私问题,提出了基于Voronoi图预划分的隐私保护策略。该策略通过信息熵计算处理待发布位置与敏感位置关联关系,并利用关联最低位置作为图心建立Voronoi图。进而利用Voronoi单元格特性将待发布的位置信息替... 针对位置这一特殊数据发布的隐私问题,提出了基于Voronoi图预划分的隐私保护策略。该策略通过信息熵计算处理待发布位置与敏感位置关联关系,并利用关联最低位置作为图心建立Voronoi图。进而利用Voronoi单元格特性将待发布的位置信息替换为图心位置,以此实现敏感信息隐藏的目的。在信息隐藏的基础上,利用广义差分隐私原理,提出了基于位置发布数据的ε-敏感位置关联隐私模型,并证明所提出的算法能够满足该模型。最后,通过比较实验进一步证明了所提出的算法在隐私保护能力和发布数据可用性方面的优势,并对实验结果进行了详细的成因分析。 展开更多
关键词 信息技术 ε-敏感位置关联 VORONOI图 位置数据发布 信息熵 差分隐私
下载PDF
A Method for Time-Series Location Data Publication Based on Differential Privacy 被引量:4
2
作者 KANG Haiyan ZHANG Shuxuan JIA Qianqian 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第2期107-115,共9页
In the age of information sharing, logistics information sharing also faces the risk of privacy leakage. In regard to the privacy leakage of time-series location information in the field of logistics, this paper propo... In the age of information sharing, logistics information sharing also faces the risk of privacy leakage. In regard to the privacy leakage of time-series location information in the field of logistics, this paper proposes a method based on differential privacy for time-series location data publication. Firstly, it constructs public region of interest(PROI) related to time by using clustering optimal algorithm. And it adopts the method of the centroid point to ensure the public interest point(PIP) representing the location of the public interest zone. Secondly, according to the PIP, we can construct location search tree(LST) that is a commonly used index structure of spatial data, in order to ensure the inherent relation among location data. Thirdly, we add Laplace noise to the node of LST, which means fewer times to add Laplace noise on the original data set and ensures the data availability. Finally, experiments show that this method not only ensures the security of sequential location data publishing, but also has better data availability than the general differential privacy method, which achieves a good balance between the security and availability of data. 展开更多
关键词 sequential location data publishing region of INTEREST location search tree differential PRIVACY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部