First we prove that the approximative compactness of a nonempty set C in a normed linear space can be reformulated equivalently in another way.It is known that if C is a semi-Chebyshev closed and approximately compact...First we prove that the approximative compactness of a nonempty set C in a normed linear space can be reformulated equivalently in another way.It is known that if C is a semi-Chebyshev closed and approximately compact set in a Banach space X,then the metric projectorπC from X onto C is continuous.Under the assumption that X is midpoint locally uniformly rotund,we prove that the approximative compactness of C is also necessary for the continuity of the projectorπC by the method of geometry of Banach spaces.Using this general result we find some necessary and sufficient conditions for T to have a continuous Moore-Penrose metric generalized inverse T^+,where T is a bounded linear operator from an approximative compact and a rotund Banach space X into a midpoint locally uniformly rotund Banach space Y.展开更多
The concept of soft topological space was introduced by some authors. In the present paper, we investigate some basic notions of soft topological spaces by using new soft point concept. Later we give soft locally comp...The concept of soft topological space was introduced by some authors. In the present paper, we investigate some basic notions of soft topological spaces by using new soft point concept. Later we give soft locally compact space and the relationships between them are discussed in detail. Finally, we define soft paracompactness and explore some of its basic properties.展开更多
In this article, we prove the following results: (1) A Banach space X is weak midpoint locally k-uniformly rotund if and only if every closed ball of X is an approximatively weakly compact k-Chebyshev set; (2) A ...In this article, we prove the following results: (1) A Banach space X is weak midpoint locally k-uniformly rotund if and only if every closed ball of X is an approximatively weakly compact k-Chebyshev set; (2) A Banach space X is midpoint locally k-uniformly rotund if and only if every closed ball of X is an approximatively compact k-Chebyshev set.展开更多
基金the State Committee for Scientific Research,Poland (Grant No.1P03A1127)the National Nature Science Foundation of China (Grant Nos.10471032,10671049)
文摘First we prove that the approximative compactness of a nonempty set C in a normed linear space can be reformulated equivalently in another way.It is known that if C is a semi-Chebyshev closed and approximately compact set in a Banach space X,then the metric projectorπC from X onto C is continuous.Under the assumption that X is midpoint locally uniformly rotund,we prove that the approximative compactness of C is also necessary for the continuity of the projectorπC by the method of geometry of Banach spaces.Using this general result we find some necessary and sufficient conditions for T to have a continuous Moore-Penrose metric generalized inverse T^+,where T is a bounded linear operator from an approximative compact and a rotund Banach space X into a midpoint locally uniformly rotund Banach space Y.
文摘The concept of soft topological space was introduced by some authors. In the present paper, we investigate some basic notions of soft topological spaces by using new soft point concept. Later we give soft locally compact space and the relationships between them are discussed in detail. Finally, we define soft paracompactness and explore some of its basic properties.
基金supported by the National Natural Science Foundation of China(11671252)supported by the National Natural Science Foundation of China(11771278)
文摘In this article, we prove the following results: (1) A Banach space X is weak midpoint locally k-uniformly rotund if and only if every closed ball of X is an approximatively weakly compact k-Chebyshev set; (2) A Banach space X is midpoint locally k-uniformly rotund if and only if every closed ball of X is an approximatively compact k-Chebyshev set.