期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
有监督的局部保留投影降维算法 被引量:30
1
作者 申中华 潘永惠 王士同 《模式识别与人工智能》 EI CSCD 北大核心 2008年第2期233-239,共7页
针对局部保留投影(LPP)的非监督本质,提出一种称为有监督的局部保留算法(SLPP)的线性降维方法,它同时考虑类间分离性以及 LPP 中的局部保留特性.实验结果表明 SLPP 算法较其他算法优越.线性的 SLPP 算法还可通过使用核方法扩展到非线性... 针对局部保留投影(LPP)的非监督本质,提出一种称为有监督的局部保留算法(SLPP)的线性降维方法,它同时考虑类间分离性以及 LPP 中的局部保留特性.实验结果表明 SLPP 算法较其他算法优越.线性的 SLPP 算法还可通过使用核方法扩展到非线性的情况. 展开更多
关键词 降维 局部保留投影(lpp) 有监督的局部保留投影(Slpp) 核方法
原文传递
局部保持鉴别投影及其在人脸识别中的应用 被引量:25
2
作者 赵振华 郝晓弘 《电子与信息学报》 EI CSCD 北大核心 2013年第2期463-467,共5页
针对流形学习在人脸识别中的应用,该文提出基于局部保持投影(Locality Preserving Projection,LPP)的监督线性维数约简方法。利用样本的类别信息,将LPP的最近邻图分解为类内图和类外图,通过优化,最优保持同类数据固有的局部邻域关系,缩... 针对流形学习在人脸识别中的应用,该文提出基于局部保持投影(Locality Preserving Projection,LPP)的监督线性维数约简方法。利用样本的类别信息,将LPP的最近邻图分解为类内图和类外图,通过优化,最优保持同类数据固有的局部邻域关系,缩小数据之间的距离,同时最大化不同类数据之间的距离,从而增大各类数据分布之间的间隔,提高了嵌入空间的辨别能力。此外,在构建图的过程中采用了自适应邻域,增强了对数据分布稀疏性的表征。在Extended Yale B和CMU PIE两个开放人脸数据库上进行了试验,验证了算法的有效性。 展开更多
关键词 人脸识别 流形学习 自适应邻域 监督学习 局部保持投影
下载PDF
基于局部保持投影的鉴别最大间距准则 被引量:17
3
作者 林克正 王慧鑫 +1 位作者 卜雪娜 林晟 《模式识别与人工智能》 EI CSCD 北大核心 2010年第2期178-185,共8页
提出一种基于流形学习的特征提取方法——鉴别最大间距准则.该方法采用线性投影,保留最优的局部和全局信息数据集.试图找到具有最好鉴别能力的原始信息,使类间离散度最大的同时类内离散尽可能的小.该方法在识别率上比其它方法都有较大提... 提出一种基于流形学习的特征提取方法——鉴别最大间距准则.该方法采用线性投影,保留最优的局部和全局信息数据集.试图找到具有最好鉴别能力的原始信息,使类间离散度最大的同时类内离散尽可能的小.该方法在识别率上比其它方法都有较大提高,通过在YALE和JAFFE人脸库上的实验验证该方法的有效性. 展开更多
关键词 人脸识别 特征提取 子空间 线性鉴别分析(LDA) 局部保持投影(lpp)
原文传递
近邻概率距离在旋转机械故障集分类中的应用方法 被引量:12
4
作者 李霁蒲 赵荣珍 《振动与冲击》 EI CSCD 北大核心 2018年第11期48-54,共7页
针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,L... 针对多种故障类型的特征属性相互交叉导致故障难以辨识的问题,提出一种考虑相邻点之间成为近邻点概率的新度量函数。将新提出的近邻概率距离(Nearby Probability Distance,NPD)应用于局部保持投影算法(Locality Preserving Projection,LPP)与K-近邻(K-Nearest Neighbor,KNN)分类器中,提出基于近邻概率距离的局部保持投影算法(Nearby Probability Distance Locality Preserving Projection,NPDLPP)与基于近邻概率距离的K-近邻(Nearby Probability Distance K-Nearest Neighbor,NPDKNN)分类器;首先通过时域、频域特征提取方法,将振动信号转化为高维特征数据集,然后通过NPDLPP将高维数据集降维到低维空间,最后将降维得到的低维敏感特征集输入到NPDKNN中进行模式识别;用一个双跨度转子系统的振动信号集合进行验证,证明了所提出的降维算法效果明显,它能够达到各个故障类型更好分离。研究表明,新提出的近邻概率距离较传统的欧式距离测度更能最小化类内散度,最大化类间分离度。 展开更多
关键词 局部保持投影 近邻概率距离 K近邻分类器 距离度量
下载PDF
基于WPD和LPP的设备故障诊断方法研究 被引量:11
5
作者 丁晓喜 何清波 《振动与冲击》 EI CSCD 北大核心 2014年第3期89-93,共5页
小波包分解(WPD)能够将非平稳信号在低频和高频上同时分解以有效反映信号潜在的特征信息,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息。结合上述特点,给出了选取信号小波包分解后形成全部节点的谱能量,作为表征信号的特... 小波包分解(WPD)能够将非平稳信号在低频和高频上同时分解以有效反映信号潜在的特征信息,而局部保留投影法(LPP)在降维的同时保留了信号的局部特征信息。结合上述特点,给出了选取信号小波包分解后形成全部节点的谱能量,作为表征信号的特征,采用LPP提取降维特征进行模式识别的方法进行设备故障分类研究。在多组不同轴承故障及同故障不同损伤程度的多类别数据集上进行了实验,实验结果验证了这种方法的有效性。 展开更多
关键词 故障诊断 特征提取 小波包分解 局部保留投影 高斯混合模型
下载PDF
2DPCA+2DLDA和改进的LPP相结合的人脸识别算法 被引量:8
6
作者 李球球 杨恢先 +2 位作者 奉俊鹏 蔡勇勇 翟云龙 《计算机工程与应用》 CSCD 北大核心 2015年第21期199-204,共6页
针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行... 针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。 展开更多
关键词 人脸识别 二维主成分分析+二维线性判别分析(2DPCA+2DLDA) 局部保持投影(lpp) 改进的局部保持投 影(1lpp) 局部流形信息
下载PDF
广义的监督局部保留投影算法 被引量:7
7
作者 王晓明 王士同 《电子与信息学报》 EI CSCD 北大核心 2009年第8期1840-1845,共6页
针对监督的局部保留投影算法(Supervised Locality Preserving Projection,SLPP)在小样本情况下矩阵的奇异性问题,该文提出了一种广义的监督局部保留投影算法(Generalized Supervised Locality Preserving Projection,GSLPP)。GSLPP在... 针对监督的局部保留投影算法(Supervised Locality Preserving Projection,SLPP)在小样本情况下矩阵的奇异性问题,该文提出了一种广义的监督局部保留投影算法(Generalized Supervised Locality Preserving Projection,GSLPP)。GSLPP在大样本情况下等价于SLPP,在小样本情况下却可以等价转换到一个低维空间中来求解,从而有效解决了小样本问题。最后,实验结果验证了该方法的有效性。 展开更多
关键词 特征提取 局部保留投影 监督局部保留投影
下载PDF
基于改进的局部保持投影算法的人脸识别 被引量:7
8
作者 龚劬 华桃桃 《计算机应用》 CSCD 北大核心 2012年第2期528-530,534,共4页
局部保持投影算法是基于流形的学习方法,在人脸识别过程中容易遇到奇异值问题,为此提出一种利用奇异值分解的方法。在模型中,样本数据被投影到一个非奇异正交矩阵中,解决了奇异值问题;然后再根据局部保持投影算法求出新样本空间的低维... 局部保持投影算法是基于流形的学习方法,在人脸识别过程中容易遇到奇异值问题,为此提出一种利用奇异值分解的方法。在模型中,样本数据被投影到一个非奇异正交矩阵中,解决了奇异值问题;然后再根据局部保持投影算法求出新样本空间的低维投影子空间。将训练样本和测试样本分别投影到低维子空间中,再利用最近邻分类器进行分类识别。在ORL人脸数据库中,采用了一系列的实验来对比该算法与传统局部保持投影算法和主成分分析算法的识别效果。实验结果验证了改进的局部保持投影算法在人脸识别的有效性。 展开更多
关键词 流形学习 局部保持投影 奇异值分解 人脸识别 模式识别
下载PDF
基于局部保持投影和核直接判别分析的掌纹识别 被引量:6
9
作者 郭金玉 李元 +1 位作者 孔晓光 曾静 《光电子.激光》 EI CAS CSCD 北大核心 2011年第1期127-130,共4页
为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的... 为了提高识别性能,提出运用局部保持投影(LPP)和核直接判别分析(KDDA)相结合的方法进行掌纹识别。在小样本图像识别中,为了解决特征方程矩阵的奇异性,首先运用图像下抽样降低掌纹空间的维数,然后应用LPP提取掌纹局部结构特征作为KDDA的输入提取分类特征,计算特征向量间的余弦距离进行掌纹匹配。运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与主元分析(PCA)、独立元分析(ICA)、PCA+LPP、核局部保持投影(KLPP)、核判别分析(KDA)和抽样(sample)+LPP相比,本文算法的识别率(RR)最高为99.71%,特征提取和匹配总时间为0.131 s,满足实时系统的要求。 展开更多
关键词 图像处理 掌纹识别 下抽样 局部保持投影(lpp) 核直接判别分析(KDDA)
原文传递
基于短时滑移模糊熵和LPP的轴承故障诊断 被引量:6
10
作者 童水光 张依东 +1 位作者 徐剑 从飞云 《振动.测试与诊断》 EI CSCD 北大核心 2018年第4期810-815,共6页
针对旋转机械设备的故障特征微弱和环境噪声强等问题,提出了一种基于短时滑移模糊熵和局部保留投影法(locality preserving projection,简称LPP)的故障特征提取方法。首先,通过对滑移截断短时序列的架构分析,引入多尺度复合模糊熵,获得... 针对旋转机械设备的故障特征微弱和环境噪声强等问题,提出了一种基于短时滑移模糊熵和局部保留投影法(locality preserving projection,简称LPP)的故障特征提取方法。首先,通过对滑移截断短时序列的架构分析,引入多尺度复合模糊熵,获得信号在不同复合尺度下的特征信息和故障潜在特征,能准确反应信号复杂度和不确定性;其次,应用LPP流形降维并保留信号的局部数据特征,设计最优带通滤波器,对轴承振动信号进行故障冲击特征提取。仿真分析和实验数据结果验证了该方法在强背景噪声情况下降噪抑制方面的有效性,具有快速识别和提取滚动轴承的微弱冲击特征的能力。 展开更多
关键词 故障诊断 特征提取 滑移截断短时序列 多尺度复合模糊熵 局部保留投影法
下载PDF
基于自适应LPP特征降维和改进VPMCD的滚动轴承故障诊断
11
作者 王斐 许波 《现代制造工程》 CSCD 北大核心 2024年第6期154-161,94,共9页
针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class... 针对机械系统状态监测与故障诊断中存在的故障特征维数较高及模式识别导致的耗时较高问题,提出了一种基于自适应局部保持投影(Locality Preserving Projection,LPP)特征降维和改进多变量预测模型(Variable Predictive Model based Class Discriminate,VPMCD)的故障诊断方法。首先,从滚动轴承振动信号中提取时频域特征、能量特征,以及复杂度特征组成高维故障特征数据集;其次,利用自适应LPP方法对高维故障特征数据集进行降维处理,得到低维敏感故障特征;最后,采用改进VPMCD方法对低维敏感故障特征进行分类识别,进而判断故障类型。通过滚动轴承故障诊断试验分析表明,自适应LPP方法克服了传统LPP方法需要人工选取参数的缺陷,在获得低维敏感故障特征的基础上具有较少计算时间,相比主成分分析(Principal Component Analysis,PCA)、局部切空间排列(Local Tangent Space Alignment,LTSA)、线性局部切空间排列(Linear Local Tangent Space Alignment,LLTSA)、等距特征映射(Isometric Mapping,Isomap),以及局部线性嵌入(Locally Linear Embedding,LLE)等算法具有明显的优势;改进VPMCD方法可克服人工选择模型的偶然性和片面性,在滚动轴承10种故障状态的识别中获得了99.4%的诊断精度,相比优化参数支持向量机方法提高了故障诊断效率,大大降低了识别时间,具有一定的优越性。 展开更多
关键词 滚动轴承 故障诊断 特征降维 模式识别 局部保持投影 多变量预测模型
下载PDF
局部保持对支持向量机 被引量:4
12
作者 花小朋 丁世飞 《计算机研究与发展》 EI CSCD 北大核心 2014年第3期590-597,共8页
多面支持向量机(multiple surface support vector machine,MSSVM)分类方法作为传统支持向量机(support vector machine,SVM)的拓展在模式识别领域成为新的研究热点之一,然而已有的MSSVM方法并没有充分考虑到训练样本之间的局部几何结... 多面支持向量机(multiple surface support vector machine,MSSVM)分类方法作为传统支持向量机(support vector machine,SVM)的拓展在模式识别领域成为新的研究热点之一,然而已有的MSSVM方法并没有充分考虑到训练样本之间的局部几何结构以及所蕴含的判别信息.因此将保局投影(locality preserving projections,LPP)的基本思想引入到MSSVM中,提出局部保持对支持向量机(locality preserving twin support vector machine,LPTSVM).LPTSVM方法不但继承了MSSVM方法具有的异或(XOR)问题处理能力,而且充分考虑样本间的局部几何结构,体现样本间所蕴含的局部判别信息,从而在一定程度上提高了分类精度.主成分分析(principal component analysis,PCA)方法克服了LPTSVM奇异性问题,保证了LPTSVM方法的有效性.非线性情况下,通过经验核映射方法构造了非线性LPTSVM.在人造数据集和真实数据集上的测试表明LPTSVM方法具有较好的泛化性能. 展开更多
关键词 分类 多面支持向量机 保局投影 主成分分析 经验核映射 multiple surface support vector machine (MSSVM) locality preserving projection (lpp) principal component analysis (PCA)
下载PDF
直接正交鉴别保局投影算法 被引量:4
13
作者 林玉娥 李敬兆 +1 位作者 梁兴柱 林玉荣 《光电子.激光》 EI CAS CSCD 北大核心 2012年第3期561-565,共5页
针对保局投影(LPP)及其衍生出的算法在人脸识别时须先采用主成分分析(PCA)算法对高维样本降维后才能应用,本文基于正交鉴别保局投影(ODLPP,orthogonal discriminal locality pre-serving projection)算法,提出了一种直接ODLPP(DODLPP)算... 针对保局投影(LPP)及其衍生出的算法在人脸识别时须先采用主成分分析(PCA)算法对高维样本降维后才能应用,本文基于正交鉴别保局投影(ODLPP,orthogonal discriminal locality pre-serving projection)算法,提出了一种直接ODLPP(DODLPP)算法,利用拉普拉斯矩阵性质进行了相应的矩阵分解,可直接从高维样本的原始空间中提取投影矩阵。为解决ODLPP算法的小样本问题,给出先求解局部类内散度矩阵的零空间,然后再最大化类间散度矩阵的求解思路。人脸库上的实验结果表明所提算法的有效性。 展开更多
关键词 保局投影(lpp) 人脸识别 直接正交鉴别保局投影(DODLP)算法 拉普拉斯矩阵
原文传递
一种基于核的监督流形学习算法 被引量:3
14
作者 李君宝 潘正祥 《模式识别与人工智能》 EI CSCD 北大核心 2008年第3期388-393,共6页
针对流形学习算法——局部保持映射存在的参数选择及不能进行非线性特征提取的问题,提出一种基于核的监督流形学习算法.该算法作为局部保持映射算法的改进算法用样本类标识信息指导建立局部最近邻图,并在建立局部最近邻图使用无参数的... 针对流形学习算法——局部保持映射存在的参数选择及不能进行非线性特征提取的问题,提出一种基于核的监督流形学习算法.该算法作为局部保持映射算法的改进算法用样本类标识信息指导建立局部最近邻图,并在建立局部最近邻图使用无参数的相似度量.利用核方法来解决局部保持映射算法在处理线性不可分问题上的局限性问题.在两个常用数据库上验证本文算法的可行性和有效性. 展开更多
关键词 流形学习 局部保持映射(lpp) 核学习 监督学习 特征提取
原文传递
基于局部保持投影与隐马尔可夫模型的维文字符识别 被引量:1
15
作者 刘卫 李和成 《计算机应用》 CSCD 北大核心 2012年第8期2309-2312,共4页
针对传统隐马尔可夫模型(HMM)在对手写维吾尔文字符建模时,字符宽度变化大,模型训练收敛缓慢,且易陷入局部极值的问题,提出一种基于保局投影(LPP)与HMM相结合的维吾尔字符识别方法。首先,通过高度归一化保持原图像的宽高比,用滑动窗获... 针对传统隐马尔可夫模型(HMM)在对手写维吾尔文字符建模时,字符宽度变化大,模型训练收敛缓慢,且易陷入局部极值的问题,提出一种基于保局投影(LPP)与HMM相结合的维吾尔字符识别方法。首先,通过高度归一化保持原图像的宽高比,用滑动窗获取子图像序列,形成观测向量序列;其次,采用局部保持投影将观测序列映射到低维空间,并用随机抽样方法降低邻接图矩阵的规模;最后,采用新观测序列训练HMM。该算法在降维的同时提高了HMM的收敛速度,降低了陷入局部极值的风险。实验结果显示,算法的平均收敛步数减少,错误率降低,表明算法是有效的。 展开更多
关键词 隐马尔可夫模型 局部保持投影 维文识别 归一化 收敛
下载PDF
基于判别核窗宽的掌纹识别方法 被引量:2
16
作者 郭金玉 袁堂明 +1 位作者 林森 李元 《光电子.激光》 EI CAS CSCD 北大核心 2015年第2期336-341,共6页
提出了一种新的判别核窗宽方法,进而研究了基于判别核窗宽的KPCA和LPP在掌纹识别中的应用。首先根据训练样本和类标签计算类内核窗宽和类间核窗宽;在分类密集区选择较小窗宽,在分类稀疏区选择较大窗宽,可以有效提取数据的关联特征;然后... 提出了一种新的判别核窗宽方法,进而研究了基于判别核窗宽的KPCA和LPP在掌纹识别中的应用。首先根据训练样本和类标签计算类内核窗宽和类间核窗宽;在分类密集区选择较小窗宽,在分类稀疏区选择较大窗宽,可以有效提取数据的关联特征;然后运用基于判别核窗宽的KPCA和LPP方法提取低维特征向量,计算特征向量间的余弦距离进行掌纹匹配;最后运用PolyU掌纹图像库,对本文算法进行测试。实验结果表明,与传统算法相比,本文算法的识别率最高,识别时间小于0.6s,验证了方法的有效性。 展开更多
关键词 掌纹识别 判别核窗宽 核主元分析(KPCA) 局部保持投影(lpp)
原文传递
面向酉子空间的二维判别保局投影的人脸识别 被引量:1
17
作者 曹孝斌 廖海斌 李原 《计算机应用研究》 CSCD 北大核心 2011年第9期3569-3571,3575,共4页
保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法... 保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。 展开更多
关键词 人脸识别 局部保持投影 二维判别保局投影 酉子空间
下载PDF
基于生物启发特征的真实环境笑脸分类方法 被引量:2
18
作者 陈俊 《计算机工程》 CAS CSCD 北大核心 2011年第18期198-200,共3页
为解决生物启发模型(BIM)存在的3个问题,即高计算复杂度、有争议的视觉皮层关系建模,以及类前向反馈机制带来的盲目特征选择,提出一种基于生物启发特征(BIF)的真实环境笑脸分类方法。构建基于BIF的笑脸分类系统,提取人脸表情图像嘴部区... 为解决生物启发模型(BIM)存在的3个问题,即高计算复杂度、有争议的视觉皮层关系建模,以及类前向反馈机制带来的盲目特征选择,提出一种基于生物启发特征(BIF)的真实环境笑脸分类方法。构建基于BIF的笑脸分类系统,提取人脸表情图像嘴部区域的金字塔梯度方向直方图特征,使用局部保持投影进行BIM特征降维,采用Adaboost算法进行BIM特征选择。实验结果验证,该系统的最佳识别率达96.5%。 展开更多
关键词 笑脸表情分类 生物启发特征 金字塔梯度方向直方图特征 局部保持投影 支持向量机
下载PDF
基于LPP与VPMCD的液压泵故障模式识别 被引量:2
19
作者 王余奎 李洪儒 许葆华 《中国机械工程》 EI CAS CSCD 北大核心 2015年第24期3327-3335,共9页
针对液压泵振动信号复杂且难以提取有效特征量的问题,提出一种基于局部保留投影(LPP)算法的故障特征提取方法。采用集总经验模态分解(EEMD)法对液压泵振动信号进行分解,从得到的内禀模态分量(IMF)中选取敏感分量,对敏感分量进行分析并... 针对液压泵振动信号复杂且难以提取有效特征量的问题,提出一种基于局部保留投影(LPP)算法的故障特征提取方法。采用集总经验模态分解(EEMD)法对液压泵振动信号进行分解,从得到的内禀模态分量(IMF)中选取敏感分量,对敏感分量进行分析并从中提取液压泵故障高维特征向量,利用局部保留投影法对高维特征向量进行融合降维,提取隐藏在高维特征空间中的故障本质信息,即敏感特征向量。基于变量预测模型的模式识别(VPMCD)算法实现模式识别的良好性能,提出采用VPMCD算法实现液压泵故障模式识别。基于提取的敏感特征集,建立各状态敏感特征的变量预测模型,进而实现液压泵的故障识别,实测液压泵振动信号分析结果验证了所提出液压泵故障模式识别方法的有效性。通过对比分析验证了所提出方法的良好性能。 展开更多
关键词 液压泵 故障模式识别 局部保留投影法 基于变量预测模型的模式识别
下载PDF
基于线性鉴别的无参数局部保持投影算法 被引量:2
20
作者 范君 业巧林 业宁 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期211-220,共10页
针对局部保持投影算法的无监督性质和参数选择复杂性问题,结合线性鉴别分析算法,提出一种改进的有监督无参数局部保持投影算法(Linear Discriminant Supervised Parameter-free Locality Preserving Projection algorithm,LD-SPLPP). LD... 针对局部保持投影算法的无监督性质和参数选择复杂性问题,结合线性鉴别分析算法,提出一种改进的有监督无参数局部保持投影算法(Linear Discriminant Supervised Parameter-free Locality Preserving Projection algorithm,LD-SPLPP). LD-SPLPP算法采用监督模式并使用广义Dice系数的方法构建近邻矩阵,有效避免LPP(Locality Preserving Projection)算法参数选择调整的问题.新算法在UCI的八个低维度数据集和两个高维度人脸数据库上进行了实验,通过对数据的特征提取,采用最近邻分类法统计识别率,并分析了实验分类后的数据值与算法性能的关系.上述实验过程中,将新算法与PCA,LDA,ULDA,OLDA,LPP,SPLPP,PSKLPP,PSLMM和EP-SLPP算法进行了对比,实验结果证明了LD-SPLPP在数据降维和特征提取方面的有效性. 展开更多
关键词 特征提取 局部保持投影 线性鉴别 无参数近邻矩阵 广义Dice系数
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部