期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多分类器融合的人脸识别方法 被引量:5
1
作者 陈羽 赖剑煌 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第4期24-27,共4页
提出了一种融合整体和局部信息进行人脸识别的新方法。首先利用DCT+LDA方法提取表达人脸信息能力强的左眼、右眼和嘴巴的局部特征,利用F isherface方法和简单频谱脸方法提取人脸的整体特征,然后应用多分类器组合规则融合整体和局部特征... 提出了一种融合整体和局部信息进行人脸识别的新方法。首先利用DCT+LDA方法提取表达人脸信息能力强的左眼、右眼和嘴巴的局部特征,利用F isherface方法和简单频谱脸方法提取人脸的整体特征,然后应用多分类器组合规则融合整体和局部特征,实验结果表明利用加法融合规则在ORL和FERET数据库上识别率分别达到98.45%和90.79%,说明了该方法的有效性,同时也表明将多分类组合应用于人脸识别是一种比较可行的思路。 展开更多
关键词 人脸识别 局部和整体特征 多分类器融合
下载PDF
自适应融合局部和全局特征的图像质量评价 被引量:1
2
作者 温静 白鑫 《计算机技术与发展》 2022年第11期50-57,共8页
无参考图像质量评价通过算法来量化图像质量的失真程度。有效建立失真位置与周围空间的依赖关系能提高质量预测的准确性,但目前基于卷积神经网络的无参考图像质量评价方法,仅通过传统的卷积对局部失真区域进行特征提取,无法有效地获取... 无参考图像质量评价通过算法来量化图像质量的失真程度。有效建立失真位置与周围空间的依赖关系能提高质量预测的准确性,但目前基于卷积神经网络的无参考图像质量评价方法,仅通过传统的卷积对局部失真区域进行特征提取,无法有效地获取全局的失真关系,容易弱化对失真扭曲等特征表示。因此,提出了一种基于自适应融合局部和全局特征的图像质量评价算法。在待评价图像上进行特征提取时,自适应地构建围绕每个空间位置的长距离空间和通道间的依赖关系,通过全局失真关系来增强局部特征信息的表征能力;增强图像的细节信息,并在不同尺度的特征层上自适应地融合局部和全局失真信息,整合更加丰富的失真特性,进而提高特征的判别性;再将多个尺度上的不同失真信息进行融合获得最终的质量评价得分,这种融合可以避免图像浅层信息的损失。为验证模型的有效性,在真实失真和合成失真数据集上进行实验对比分析,结果表明,在真实失真数据集LIVEC上SROCC达到0.867,对图像质量的预测更符合人类对质量的感知。 展开更多
关键词 无参考图像质量评价 视觉特征 局部和全局特征学习 自适应特征融合 卷积神经网络
下载PDF
融合局部语义与全局信息的人脸表情识别 被引量:1
3
作者 潘海鹏 郝慧 苏雯 《光电子.激光》 CAS CSCD 北大核心 2022年第6期652-659,共8页
人脸表情识别在人机交互等人工智能领域发挥着重要作用,当前研究忽略了人脸的语义信息。本文提出了一种融合局部语义与全局信息的人脸表情识别网络,由两个分支组成:局部语义区域提取分支和局部-全局特征融合分支。首先利用人脸解析数据... 人脸表情识别在人机交互等人工智能领域发挥着重要作用,当前研究忽略了人脸的语义信息。本文提出了一种融合局部语义与全局信息的人脸表情识别网络,由两个分支组成:局部语义区域提取分支和局部-全局特征融合分支。首先利用人脸解析数据集训练语义分割网络得到人脸语义解析,通过迁移训练的方法得到人脸表情数据集的语义解析。在语义解析中获取对表情识别有意义的区域及其语义特征,并将局部语义特征与全局特征融合,构造语义局部特征。最后,融合语义局部特征与全局特征构成人脸表情的全局语义复合特征,并通过分类器分为7种基础表情之一。本文同时提出了解冻部分层训练策略,该训练策略使语义特征更适用于表情识别,减少语义信息冗余性。在两个公开数据集JAFFE和KDEF上的平均识别准确率分别达到了93.81%和88.78%,表现优于目前的深度学习方法和传统方法。实验结果证明了本文提出的融合局部语义和全局信息的网络能够很好地描述表情信息。 展开更多
关键词 人脸表情识别 人脸解析 迁移学习 局部-全局特征融合 解冻部分层训练策略
原文传递
多特征感知的时空自适应相关滤波目标跟踪
4
作者 孟庆姣 姜文涛 《计算机科学》 CSCD 北大核心 2023年第S02期191-199,共9页
针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种多特征感知的时空自适应相关滤波目标跟踪的新方法。首先在目标函数中引入空间局部响应变化量实现空间正则化,使滤波器专注于学习对象中值得信任的部分... 针对正则化滤波器预先定义正则化项,但无法实时抑制非目标区域学习的缺点,提出了一种多特征感知的时空自适应相关滤波目标跟踪的新方法。首先在目标函数中引入空间局部响应变化量实现空间正则化,使滤波器专注于学习对象中值得信任的部分,从而得到响应模型;其次根据全局响应变化决定滤波器的更新率;最后通过级联颜色直方图(Colour Name,CN)与降维后的梯度直方图(Fast Histogram of Oriented Gradient,fHOG)特征实现非卷积特征层面的融合,采用ImageNet-VGG-2048的Conv1,Conv5层提取目标的空间轮廓以及语义信息,并使用ReLU函数拟合训练数据,在保留主要信息的同时提高速率。在数据集DTB70上的精确率(0.747)和成功率(0.789)相较于STRCF算法的精确率(0.737)和成功率(0.760)分别提高了1%和2.9%。大量实验证明该算法在复杂背景、物体遮挡、快速运动等多种场景下基本能满足实时性需求。 展开更多
关键词 目标跟踪 相关滤波 时空自适应 局部响应与全局响应 卷积神经网络 特征融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部