Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficien...Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.展开更多
In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In ...In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach.展开更多
Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting app...Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.展开更多
CEGAR (Counterexample-guided abstraction refinement)-based slicing is one of the most important techniques in reducing the state space in model checking. However, CEGAR-based slicing repeatedly explores the state sp...CEGAR (Counterexample-guided abstraction refinement)-based slicing is one of the most important techniques in reducing the state space in model checking. However, CEGAR-based slicing repeatedly explores the state space handled previously in case a spurious counterexample is found. Inspired by lazy abstraction, we introduce the concept of lazy slicing which eliminates this repeated computation. Lazy slicing is done on-the-fly, and only up to the precision necessary to rule out spurious counterexamples. It identifies a spurious counterexample by concretizing a path fragment other than the full path, which reduces the cost of spurious counterexample decision significantly. Besides, we present an improved over-approximate slicing method to build a more precise slice model. We also provide the proof of the correctness and the termination of lazy slicing, and implement a prototype model checker to verify safety property. Experimental results show that lazy slicing scales to larger systems than CEGAR-based slicing methods.展开更多
In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and ...In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.展开更多
基金National High Technology Research and Development Program(863 Program)(No.2006AA06Z105,2007AA06Z134)
文摘Three-dimensional forward modeling magnetotellurics (MT) problems. We present a is a challenge for geometrically complex new edge-based finite-element algorithm using an unstructured mesh for accurately and efficiently simulating 3D MT responses. The electric field curl-curl equation in the frequency domain was used to deduce the H (curl) variation weak form of the MT forward problem, the Galerkin rule was used to derive a linear finite-element equation on the linear-edge tetrahedroid space, and, finally, a BI-CGSTAB solver was used to estimate the unknown electric fields. A local mesh refinement technique in the neighbor of the measuring MT stations was used to greatly improve the accuracies of the numerical solutions. Four synthetic models validated the powerful performance of our algorithms. We believe that our method will effectively contribute to processing more complex MT studies.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2011CB013505&2014CB047100)the National Natural Science Foundation of China(Grant Nos.11572009&51538001)
文摘In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Nos.11932008 and 12272156)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-kb06)+1 种基金the Gansu Science and Technology ProgramLanzhou City’s Scientific Research Funding Subsidy to Lanzhou University of China。
文摘Second-generation high-temperature superconducting(HTS)conductors,specifically rare earth-barium-copper-oxide(REBCO)coated conductor(CC)tapes,are promising candidates for high-energy and high-field superconducting applications.With respect to epoxy-impregnated REBCO composite magnets that comprise multilayer components,the thermomechanical characteristics of each component differ considerably under extremely low temperatures and strong electromagnetic fields.Traditional numerical models include homogenized orthotropic models,which simplify overall field calculation but miss detailed multi-physics aspects,and full refinement(FR)ones that are thorough but computationally demanding.Herein,we propose an extended multi-scale approach for analyzing the multi-field characteristics of an epoxy-impregnated composite magnet assembled by HTS pancake coils.This approach combines a global homogenization(GH)scheme based on the homogenized electromagnetic T-A model,a method for solving Maxwell's equations for superconducting materials based on the current vector potential T and the magnetic field vector potential A,and a homogenized orthotropic thermoelastic model to assess the electromagnetic and thermoelastic properties at the macroscopic scale.We then identify“dangerous regions”at the macroscopic scale and obtain finer details using a local refinement(LR)scheme to capture the responses of each component material in the HTS composite tapes at the mesoscopic scale.The results of the present GH-LR multi-scale approach agree well with those of the FR scheme and the experimental data in the literature,indicating that the present approach is accurate and efficient.The proposed GH-LR multi-scale approach can serve as a valuable tool for evaluating the risk of failure in large-scale HTS composite magnets.
基金Supported by the National Natural Science Foundation of China under Grant No. 60873038the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant Nos. 2009BAH42B02 and 2012BAH08B02
文摘CEGAR (Counterexample-guided abstraction refinement)-based slicing is one of the most important techniques in reducing the state space in model checking. However, CEGAR-based slicing repeatedly explores the state space handled previously in case a spurious counterexample is found. Inspired by lazy abstraction, we introduce the concept of lazy slicing which eliminates this repeated computation. Lazy slicing is done on-the-fly, and only up to the precision necessary to rule out spurious counterexamples. It identifies a spurious counterexample by concretizing a path fragment other than the full path, which reduces the cost of spurious counterexample decision significantly. Besides, we present an improved over-approximate slicing method to build a more precise slice model. We also provide the proof of the correctness and the termination of lazy slicing, and implement a prototype model checker to verify safety property. Experimental results show that lazy slicing scales to larger systems than CEGAR-based slicing methods.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant No.41372316)
文摘In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.