针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对...针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。展开更多
This paper presents a biologically inspired local image descriptor that combines color and shape features. Compared with previous descriptors, red-cyan cells associated with L, M, and S cones (L for long, M for mediu...This paper presents a biologically inspired local image descriptor that combines color and shape features. Compared with previous descriptors, red-cyan cells associated with L, M, and S cones (L for long, M for medium, and S for short) are used to indicate one of the opponent color channels. Stepping forward from state-of-the-art color feature extraction, we exploit a new approach to compute the color orientation and magnitudes of three opponent color channels, namely, red-green, blue-yellow, and red-cyan, in two-dimensional space. Color orientation is calculated in histograms with magnitude weighting. We linearly concatenate the four-color-opponent-channel histogram and scale-invariant-feamre-transform histogram in the final step. We apply our biologically inspired descriptor to describe the local image feature. Quantitative comparisons with state-of-the-art descriptors demonstrate the significant advantages of maintaining invariance to photometric and geometric changes in image matching, particularly in cases, such as illumination variation and image blurring, where more color contrast information is observed.展开更多
提出了一种基于局部特征点检测与匹配的微悬臂梁变形受力测量方法.通过光学显微镜得到微悬臂梁变形前后的图像和基于放大的微悬臂梁表面的散斑纹理特征,在尺度空间中定位具有局部响应极值的LOG(Laplace of Gaussian)特征点,并在LOG特征...提出了一种基于局部特征点检测与匹配的微悬臂梁变形受力测量方法.通过光学显微镜得到微悬臂梁变形前后的图像和基于放大的微悬臂梁表面的散斑纹理特征,在尺度空间中定位具有局部响应极值的LOG(Laplace of Gaussian)特征点,并在LOG特征点周围提取局部仿射不变封闭区域,其质心可以作为具有亚像素精度的特征点位置.由封闭区域构造仿射不变特征描述算子并进行特征点匹配,根据匹配点的位移信息进行悬臂梁弯曲挠度曲线拟合以描述微悬臂梁的弯曲变形,并采用最小二乘法计算悬臂梁受力大小与受力点.通过对实际的微悬臂梁变形图像实验,验证了所提方法的有效性.展开更多
文摘针对物体和镜像之间的匹配问题,引入RNFA(Relative Number of False Alarms)边缘链检测方法获取更丰富的线段。文中提出一种改进的LBD(Line Band Descriptor)算法用于构建局部不变特征描述符,通过比较局部不变特征描述符获得初始匹配对。采用全局投影角度的筛选方式,并通过拟合投影中线的方式剔除初始匹配对中误匹配项。在完成全局投影角度的选取和投影中线的拟合后,放宽对局部不变特征描述符阈值的筛选以获得更多的匹配对,提升召回率。图像集仿真实验结果表明,文中所提算法在纹理较弱区域能够更好地识别线段,且能够在保证原算法性能的基础上获得更多的匹配对,提高5%左右的正确匹配率,并达到90%以上的召回率。
基金Acknowledgment This study was supported by the National Natural Science Foundation of China (grant 61101155) and the Jilin Province Science and Technology Development Program (20101504).
文摘This paper presents a biologically inspired local image descriptor that combines color and shape features. Compared with previous descriptors, red-cyan cells associated with L, M, and S cones (L for long, M for medium, and S for short) are used to indicate one of the opponent color channels. Stepping forward from state-of-the-art color feature extraction, we exploit a new approach to compute the color orientation and magnitudes of three opponent color channels, namely, red-green, blue-yellow, and red-cyan, in two-dimensional space. Color orientation is calculated in histograms with magnitude weighting. We linearly concatenate the four-color-opponent-channel histogram and scale-invariant-feamre-transform histogram in the final step. We apply our biologically inspired descriptor to describe the local image feature. Quantitative comparisons with state-of-the-art descriptors demonstrate the significant advantages of maintaining invariance to photometric and geometric changes in image matching, particularly in cases, such as illumination variation and image blurring, where more color contrast information is observed.
文摘提出了一种基于局部特征点检测与匹配的微悬臂梁变形受力测量方法.通过光学显微镜得到微悬臂梁变形前后的图像和基于放大的微悬臂梁表面的散斑纹理特征,在尺度空间中定位具有局部响应极值的LOG(Laplace of Gaussian)特征点,并在LOG特征点周围提取局部仿射不变封闭区域,其质心可以作为具有亚像素精度的特征点位置.由封闭区域构造仿射不变特征描述算子并进行特征点匹配,根据匹配点的位移信息进行悬臂梁弯曲挠度曲线拟合以描述微悬臂梁的弯曲变形,并采用最小二乘法计算悬臂梁受力大小与受力点.通过对实际的微悬臂梁变形图像实验,验证了所提方法的有效性.