为了在图像去噪的同时很好地保留细节信息以及边缘信息,本文提出一种结合非局部均值滤波(non-local mean filter,NLMF)的双边滤波(bilateral filter,BF)图像去噪方法。首先利用改进权值函数的NLMF对含噪图像进行预去噪,然后再由得到的...为了在图像去噪的同时很好地保留细节信息以及边缘信息,本文提出一种结合非局部均值滤波(non-local mean filter,NLMF)的双边滤波(bilateral filter,BF)图像去噪方法。首先利用改进权值函数的NLMF对含噪图像进行预去噪,然后再由得到的图像计算双边滤波的灰度相似性权值并对含噪图像进行最终去噪,同时采用2种快速算法分别实现非局部均值滤波和双边滤波。实验结果表明:与传统非局部均值滤波算法以及双边滤波算法相比,本文方法极大地减少了算法的运算复杂度,具有更好的去噪效果,较少的耗时。因此,本文方法对于图像去噪质量的提升具有一定的实用价值。展开更多
文摘为了在图像去噪的同时很好地保留细节信息以及边缘信息,本文提出一种结合非局部均值滤波(non-local mean filter,NLMF)的双边滤波(bilateral filter,BF)图像去噪方法。首先利用改进权值函数的NLMF对含噪图像进行预去噪,然后再由得到的图像计算双边滤波的灰度相似性权值并对含噪图像进行最终去噪,同时采用2种快速算法分别实现非局部均值滤波和双边滤波。实验结果表明:与传统非局部均值滤波算法以及双边滤波算法相比,本文方法极大地减少了算法的运算复杂度,具有更好的去噪效果,较少的耗时。因此,本文方法对于图像去噪质量的提升具有一定的实用价值。