Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solu...Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.展开更多
The relationship between the arguments of the bottom vector D(λ) and the local Symmetry is given for a system of chain conjugate polymers. On this basis, we find the condition of single-frequency reduction for its ei...The relationship between the arguments of the bottom vector D(λ) and the local Symmetry is given for a system of chain conjugate polymers. On this basis, we find the condition of single-frequency reduction for its eigenequation.展开更多
In respect of variable coefficient differential equations, the equations of coefficient function approximation were more accurate than the coefficient to be frozen as a constant in every discrete subinterval. Usually,...In respect of variable coefficient differential equations, the equations of coefficient function approximation were more accurate than the coefficient to be frozen as a constant in every discrete subinterval. Usually, the difference schemes constructed based on Taylor expansion approximation of the solution do not suit the solution with sharp function. Introducing into local bases to be combined with coefficient function approximation, the difference can well depict more complex physical phenomena, for example, boundary layer as well as high oscillatory,with sharp behavior. The numerical test shows the method is more effective than the traditional one.展开更多
We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solv...We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.展开更多
基金Partially supported by NSF DMS-0074299 through Penn State and Center for Computational Mathematics and Applications, The Pennsylvania State University.Subsidized by the Special Funds for Major State Basic Research Projects, and also partially supported
文摘Some new local and parallel finite element algorithms are proposed and analyzed in this paper for eigenvalue problems. With these algorithms, the solution of an eigenvalue problem on a fine grid is reduced to the solution of an eigenvalue problem on a relatively coarse grid together with solutions of some linear algebraic systems on fine grid by using some local and parallel procedure. A theoretical tool for analyzing these algorithms is some local error estimate that is also obtained in this paper for finite element approximations of eigenvectors on general shape-regular grids.
文摘The relationship between the arguments of the bottom vector D(λ) and the local Symmetry is given for a system of chain conjugate polymers. On this basis, we find the condition of single-frequency reduction for its eigenequation.
文摘In respect of variable coefficient differential equations, the equations of coefficient function approximation were more accurate than the coefficient to be frozen as a constant in every discrete subinterval. Usually, the difference schemes constructed based on Taylor expansion approximation of the solution do not suit the solution with sharp function. Introducing into local bases to be combined with coefficient function approximation, the difference can well depict more complex physical phenomena, for example, boundary layer as well as high oscillatory,with sharp behavior. The numerical test shows the method is more effective than the traditional one.
基金Supported by The Special Funds For Major State Basic Research Projects (No. G1999032803) The China NNSF 0utstanding Young Scientist Foundation (No. 10525102)+1 种基金 The National Natural Science Foundation (No. 10471146) The National Basic Research Program (No. 2005CB321702), P.R. China.
文摘We construct a modified Bernoulli iteration method for solving the quadratic matrix equation AX^2 + BX + C = 0, where A, B and C are square matrices. This method is motivated from the Gauss-Seidel iteration for solving linear systems and the ShermanMorrison-Woodbury formula for updating matrices. Under suitable conditions, we prove the local linear convergence of the new method. An algorithm is presented to find the solution of the quadratic matrix equation and some numerical results are given to show the feasibility and the effectiveness of the algorithm. In addition, we also describe and analyze the block version of the modified Bernoulli iteration method.