期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Consideration of the Local Correlation of Learning Behaviors to Predict Dropouts from MOOCs 被引量:5
1
作者 Yimin Wen Ye Tian +3 位作者 Boxi Wen Qing Zhou Guoyong Cai Shaozhong Liu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2020年第3期336-347,共12页
Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout predictio... Recently, Massive Open Online Courses(MOOCs) have become a major online learning methodology for millions of people worldwide. However, the dropout rates from several current MOOCs are high. Usually, dropout prediction aims to predict whether a learner will exhibit learning behaviors during several consecutive days in the future. Therefore, the information related to the learning behaviors of a learner in several consecutive days should be considered. After in-depth analysis of the learning behavior patterns of the MOOC learners, this study reports that learners often exhibit similar learning behaviors on several consecutive days, i.e., the learning status of a learner for the subsequent day is likely to be similar to that for the previous day. Based on this characteristic of MOOC learning,this study proposes a new simple feature matrix for keeping information related to the local correlation of learning behaviors and a new Convolutional Neural Network(CNN) model for predicting the dropout. Extensive experimental validations illustrate that the local correlation of learning behaviors should not be neglected. The proposed CNN model considers this characteristic and improves the dropout prediction accuracy. Furthermore, the proposed model can be used to predict dropout temporally and early when sufficient data are collected. 展开更多
关键词 Massive Open Online Courses(MOOCs) dropout prediction local correlation of learning behaviors Convolutional Neural Network(CNN) educational data mining
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部