We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corr...We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.展开更多
The controllability of a class of conformable fractional differential system with a non-densely defined linear part satisfying Hille-Yosida condition,is discussed.The existence of mild solution and controllability is ...The controllability of a class of conformable fractional differential system with a non-densely defined linear part satisfying Hille-Yosida condition,is discussed.The existence of mild solution and controllability is established by Banach-fixed point theorem for the system with non-local conditions and control term appearing also in the nonlinear part.An example is discussed to illustrate the results.展开更多
This paper deals with the problem of internal controllability of a system of heat equations posed on a bounded domain with Dirichlet boundary conditions and perturbed with analytic non-local coupling terms. Each compo...This paper deals with the problem of internal controllability of a system of heat equations posed on a bounded domain with Dirichlet boundary conditions and perturbed with analytic non-local coupling terms. Each component of the system may be controlled in a different subdomain. Assuming that the unperturbed system is controUable--a property that has been recently characterized in terms of a Kalman-like rank condition--the authors give a necessary and sufficient condition for the controllability of the coupled system under the form of a unique continuation property for the corresponding elliptic eigenvalue system. The proof relies on a compactness-uniqueness argument, which is quite unusual in the context of parabolic systems, previously developed for scalar parabolic equations. The general result is illustrated by two simple examples.展开更多
The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGC...The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.展开更多
文摘We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.
文摘The controllability of a class of conformable fractional differential system with a non-densely defined linear part satisfying Hille-Yosida condition,is discussed.The existence of mild solution and controllability is established by Banach-fixed point theorem for the system with non-local conditions and control term appearing also in the nonlinear part.An example is discussed to illustrate the results.
文摘This paper deals with the problem of internal controllability of a system of heat equations posed on a bounded domain with Dirichlet boundary conditions and perturbed with analytic non-local coupling terms. Each component of the system may be controlled in a different subdomain. Assuming that the unperturbed system is controUable--a property that has been recently characterized in terms of a Kalman-like rank condition--the authors give a necessary and sufficient condition for the controllability of the coupled system under the form of a unique continuation property for the corresponding elliptic eigenvalue system. The proof relies on a compactness-uniqueness argument, which is quite unusual in the context of parabolic systems, previously developed for scalar parabolic equations. The general result is illustrated by two simple examples.
基金supported by the National Natural Science Foundation of China (No.10902003)
文摘The attitude control problem of a spacecraft underactuated by two single-gimbal control moment gyros (SGCMGs) is investigated. Small-time local controllability (STLC) of the attitude dynamics of the spacecraft-SGCMGs system is analyzed via nonlinear controllability theory. The conditions that guarantee STLC of the spacecraft attitude by two non-coaxial SGCMGs are obtained with the momentum of the SGCMGs as inputs, implying that the spacecraft attitude is STLC when the total angular momentum of the whole system is zero. Moreover, our results indi- cate that under the zero-momentum restriction, full attitude stabilization is possible for a spacecraft using two non-coaxial SGCMGs. For the case of two coaxial SGCMGs, the STLC property of the spacecraft cannot be determined. In this case, an improvement to the previous full attitude stabilizing control law, which requires zero-momentum presumption, is proposed to account for the singu- larity of SGCMGs and enhance the steady state performance. Numerical simulation results demonstrate the effectiveness and advantages of the new control law.