锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的...锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的T-Nb_2O_5/AC锂离子混合电容器。循环伏安和恒电流充放电的测试结果表明该锂离子混合电容器具有较好的电化学性能,如在碳酸酯类的有机电解液中,工作电压可达到3.0 V;在100 m A·g^(-1)的电流密度下,电容器的比能量和比功率密度可达到53.79 Wh·kg^(-1)和294 W·kg^(-1);在200 m A·g^(-1)的电流密度下,经过1000次充放电循环后,该电容器的比能量保持率为73%。由此可见,本工作开发的T-Nb_2O_5/AC锂离子混合电容器将在高功率的储能设备中有很好地应用前景。展开更多
【目的】为研究混合锂离子超级电容器(hybrid lithium ion supercapacitor,HLIC)的性能,分析多种干扰因素对其电化学与热特性的影响。【方法】首先建立HLIC电化学热耦合模型;其次通过试验与数值模拟相互验证来证明模型的可靠性;最后分...【目的】为研究混合锂离子超级电容器(hybrid lithium ion supercapacitor,HLIC)的性能,分析多种干扰因素对其电化学与热特性的影响。【方法】首先建立HLIC电化学热耦合模型;其次通过试验与数值模拟相互验证来证明模型的可靠性;最后分析阳极活性材料颗粒粒径、充放电倍率、电芯结构状态对HLIC的电化学与热特性的影响,并通过建立核壳模型绘制核壳图,从微观的角度分析了阳极活性材料颗粒粒径对HLIC电化学性能的影响过程。【结果】HLIC在高倍率的条件下,减小粒径可使阳极活性材料颗粒锂化程度显著提高,10 C倍率下粒径15.5μm与0.5μm的单体相比,前者能量密度降低了63.14%,平均发热率增加了121.66%,最大温度上升了17.7 K;而在低倍率的条件下,粒径对HLIC的性能影响不大,无须增加成本过分减小粒径,并且电芯在层压方向导热性较差,需要在层压方向上增加散热以保证其工作性能良好。【结论】本研究对各个场景所需的HLIC性能参数的选取具有一定的参考意义。展开更多
文摘锂离子混合电容器由于兼备锂离子电池和超级电容器的优势,即较高的能量密度和功率密度,而成为当前能量存储体系的研究热点。本工作合成了具有三维花状微纳结构的正交相五氧化二铌(T-Nb_2O_5),并将其与活性炭(AC)相匹配,设计出一种新型的T-Nb_2O_5/AC锂离子混合电容器。循环伏安和恒电流充放电的测试结果表明该锂离子混合电容器具有较好的电化学性能,如在碳酸酯类的有机电解液中,工作电压可达到3.0 V;在100 m A·g^(-1)的电流密度下,电容器的比能量和比功率密度可达到53.79 Wh·kg^(-1)和294 W·kg^(-1);在200 m A·g^(-1)的电流密度下,经过1000次充放电循环后,该电容器的比能量保持率为73%。由此可见,本工作开发的T-Nb_2O_5/AC锂离子混合电容器将在高功率的储能设备中有很好地应用前景。