锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学...锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。展开更多
在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方...在充电式混合动力电动汽车(plug-in hybrid electric vehicle,PHEV)和电动汽车(electric vehicle,EV)中,对电池进行精确、可靠的荷电状态估计(state of charge,SOC)非常重要。传统估计方法存在计算量大、估计不精确等缺点,提出一种平方根无迹卡尔曼滤波(square root unscented Kalman filter,SRUKF)算法对SOC进行实时估计及更新。利用无迹变换(unscented transformation,UT)精确估计系统方程的均值和协方差,使估算值达到二阶精度。利用平方根算法保证状态协方差的半正定性,提高数字计算的稳定性。通过实验对比,验证了该算法的有效性。结果表明,该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC估计的实际需求。展开更多
电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关...电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。展开更多
鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通...鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.展开更多
文摘锂离子电池常被作为储能元件以实现电能的存储和转化,然而其荷电状态(state of charge,SOC)和健康状态(state of health,SOH)无法被直接测量。为了实现锂离子电池SOC和SOH联合估算,该文分析SOC和SOH之间的关联性,并提出一种基于深度学习的锂离子电池SOC和SOH联合估算方法。该方法能够基于门控循环单元循环神经网络(recurrent neural network with gated recurrent unit,GRU-RNN)和卷积神经网络(convolutional neural network,CNN),利用锂离子电池电压、电流、温度,实现锂离子电池全使用周期内SOC和SOH的同时估算,而且由于将锂离子电池的SOH估算值考虑到SOC估算中,能够消除锂离子电池老化因素对锂离子电池SOC估算造成的负面影响,从而提升SOC估算精度。两个锂离子电池测试数据集上的实验结果表明,提出的估算方法能够在不同温度和不同工况下实现锂离子电池全使用周期SOC和SOH联合估算,且获得较高的精度。
文摘电池管理系统是保证锂离子电池高效、安全运行的重要手段。在电池管理系统功能中,电池状态估计,特别是荷电状态(state of charge,SOC)估计和健康状态(state of health,SOH)估计至关重要。SOC/SOH不仅与全生命周期内电池安全运行直接相关,也是其他功能有效实现的必要前提。本文围绕模型类电池状态估计方法,综述了国内外在锂离子电池模型构建、SOC及SOH估计方法方面的研究进展;指出了模型类状态估计方法存在的难点和局限,提出了今后研究重点。
文摘鉴于卡尔曼滤波法中电池荷电状态(state of charge,SOC)的初始值一般根据开路电压法确定,传统开路电压法是通过测量电池开路电压,由电池开路电压与电池荷电状态之间的关系曲线得到电池SOC,耗时较长.本文在此基础上提出一种新的办法,通过对电池放电曲线及恢复曲线分析,结合电池等效模型,拟合出开路电压的计算公式.用放电停止后的某时刻电压估计电池的开路电压.不但解决了SOC估算中开路电压法用时长的问题,而且提高了开路电压值的准确性,进而提高了SOC估算精度.再以戴维宁模型为基础,通过电池测试平台辨识电池模型参数,并验证其可靠性,采用扩展卡尔曼滤波算法实现了对电池荷电状态的估算,状态参数SOC估算初始值由改进后的开路电压法估算出的SOC值确定.结果表明该方法解决了初始值的偏差导致的估算初期误差较大问题,提高了整体的估算精度.