以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2...以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。展开更多
文摘以熔融静电纺丝法制备锂离子电池用聚偏氟乙烯(PVDF)多孔超细纤维隔膜。对隔膜的物理性能、电化学性能以及组装电池性能等进行了测试分析。在静电场和温度的协同作用下,能够生成β相PVDF,促进电解质中锂盐的离子化。与商业隔膜Celgard 2400进行对比,熔融静电纺PVDF隔膜在130℃下受热0.5 h尺寸几乎无变化;孔隙率和吸液率高达83.99%和342.52%,离子电导率可达0.833 m S/cm。组装成半电池测试,初始放电比容量可达157.69 m A·h/g;0.5C下充放电100次后,容量保持率可达84.68%,优于商业隔膜的75.72%;在不同电流密度下测试,均能保持较稳定的放电比容量。