Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two...Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two issues should be addressed: fundamentally understanding the chemical reaction occurring in TMD electrodes and developing novel TMDs. In this study, WSe2 hexagonal nanoplates were synthesized as lithium/sodium-ion battery (LIB/SIB) electrode materials. For LIBs, the WSe2-nanoplate electrodes achieved a stable reversible capacity and a high rate capability, as well as an ultralong cycle life of up to 1,500 cycles at 1,000 mA·g^-1. Most importantly, in situ Raman spectroscopy, ex situ X-ray diffraction (XRD), transmission electron microscopy, and electrochemical impedance spectroscopy measurements performed during the discharge-charge process clearly verified the reversible conversion mechanism, which can be summarized as follows: WSe2 + 4Li^+ + 4e^- ←→ W + 2Li2Se. The WSe2 nanoplates also exhibited excellent cycling performance and a high rate capability as SIB electrodes. Ex situ XRD and Raman spectroscopy results demonstrate that WSe2 reacted with Na^+ more easily and thoroughly than with Li^+ and converted to Na2Se and tungsten in the Ist sodiated state. The subsequent charging reaction can be expressed as Na2Se → Se + 2Na^++ 2e^-, which differs from the traditional conversion mechanism for LIBs. To our knowledge, this is the first systematic exploration of the lithium/sodium-storage performance of WSe2 and the mechanism involved.展开更多
基金The authors gratefully acknowledge financial support by National Natural Science Foundation of China (Nos. 51371106 and 51671115), and Young Tip-top Talent Support Project (the Organization Department of the Central Committee of the CPC).
文摘Transition-metal dichalcogenides (TMDs) exhibit immense potential as lithium/ sodium-ion electrode materials owing to their sandwich-like layered structures. To optimize their lithium/sodium-storage performance, two issues should be addressed: fundamentally understanding the chemical reaction occurring in TMD electrodes and developing novel TMDs. In this study, WSe2 hexagonal nanoplates were synthesized as lithium/sodium-ion battery (LIB/SIB) electrode materials. For LIBs, the WSe2-nanoplate electrodes achieved a stable reversible capacity and a high rate capability, as well as an ultralong cycle life of up to 1,500 cycles at 1,000 mA·g^-1. Most importantly, in situ Raman spectroscopy, ex situ X-ray diffraction (XRD), transmission electron microscopy, and electrochemical impedance spectroscopy measurements performed during the discharge-charge process clearly verified the reversible conversion mechanism, which can be summarized as follows: WSe2 + 4Li^+ + 4e^- ←→ W + 2Li2Se. The WSe2 nanoplates also exhibited excellent cycling performance and a high rate capability as SIB electrodes. Ex situ XRD and Raman spectroscopy results demonstrate that WSe2 reacted with Na^+ more easily and thoroughly than with Li^+ and converted to Na2Se and tungsten in the Ist sodiated state. The subsequent charging reaction can be expressed as Na2Se → Se + 2Na^++ 2e^-, which differs from the traditional conversion mechanism for LIBs. To our knowledge, this is the first systematic exploration of the lithium/sodium-storage performance of WSe2 and the mechanism involved.