研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结...研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结密度;最佳条件为添加6%的Fe Mo B细粉、室温压制、1250℃烧结,烧结密度接近7.70g/cm3。另外,压缩试验表明添加量大于6%后,添加Fe Mo B的烧结制品的塑性比添加Cu3P的塑性要好。展开更多
Liquid-phase enhanced sintering of powder metallurgy(P/M)316L stainless steel by addition of sintering aids was studied.2%-8% of pre-alloyed Fe-Mo-B powder with two different particle sizes was added as sintering ai...Liquid-phase enhanced sintering of powder metallurgy(P/M)316L stainless steel by addition of sintering aids was studied.2%-8% of pre-alloyed Fe-Mo-B powder with two different particle sizes was added as sintering aids,and the specimens were sintered in vacuum at 1 200-1 350 ℃.The results show that the fine Fe-Mo-B powder(5-10 μm)has stronger activated effect.The sintered density increases with the increase in sintering aid content or sintering temperature.Warm compaction has a better effect on the control of dimensional precision of compacts.The prealloyed Fe-Mo-B powder deviated from Mo2FeB2 component can also be sintering aid of P/M 316L stainless steel.展开更多
Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at differen...Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at different sintering temperatures and additive contents. The change of phase compositions, secondary phase distributions and grain morphologies during sintering process were investigated. It is shown that fully dense ceramics using AIN powder prepared by SHS method can be obtained when the sintering temperature is above 1830 ℃. Both Y2O3content and sintering temperature have an important influence on the formation of Y-Al-O phase and grain shape. When Y2O3content is identified, the grain morphology converts from polyhedron into sphere-like shape with the rise of sintering temperature. At a certain sintering temperature,the grain size decreases with the increase in Y2O3content. The influencing mechanisms of different YAl-O secondary phases and sintering temperatures on the grain size and morphology were also discussed based on the experimental results.展开更多
文摘研究了粉末316L不锈钢添加活化剂的液相强化烧结。在1200~1350℃采用真空烧结,对含量为2%~8%的Cu3P和Fe Mo B两种烧结助剂进行比较,后者采用两种粒度。结果表明:Fe Mo B细粉强化作用最强;增加烧结助剂含量和提高烧结温度可以提高烧结密度;最佳条件为添加6%的Fe Mo B细粉、室温压制、1250℃烧结,烧结密度接近7.70g/cm3。另外,压缩试验表明添加量大于6%后,添加Fe Mo B的烧结制品的塑性比添加Cu3P的塑性要好。
基金Item Sponsored by National High-Tech ResearchDevelopment Programof China(2001AA337010)
文摘Liquid-phase enhanced sintering of powder metallurgy(P/M)316L stainless steel by addition of sintering aids was studied.2%-8% of pre-alloyed Fe-Mo-B powder with two different particle sizes was added as sintering aids,and the specimens were sintered in vacuum at 1 200-1 350 ℃.The results show that the fine Fe-Mo-B powder(5-10 μm)has stronger activated effect.The sintered density increases with the increase in sintering aid content or sintering temperature.Warm compaction has a better effect on the control of dimensional precision of compacts.The prealloyed Fe-Mo-B powder deviated from Mo2FeB2 component can also be sintering aid of P/M 316L stainless steel.
基金financially supported by the International Cooperation Project of Zhejiang Province (No. 2012C24007)
文摘Fully dense aluminum nitride(AIN) ceramics were synthesized by self-propagating high-temperature synthesis(SHS) method using AIN powder as raw material with Y2O3additive. The sintering behavior was studied at different sintering temperatures and additive contents. The change of phase compositions, secondary phase distributions and grain morphologies during sintering process were investigated. It is shown that fully dense ceramics using AIN powder prepared by SHS method can be obtained when the sintering temperature is above 1830 ℃. Both Y2O3content and sintering temperature have an important influence on the formation of Y-Al-O phase and grain shape. When Y2O3content is identified, the grain morphology converts from polyhedron into sphere-like shape with the rise of sintering temperature. At a certain sintering temperature,the grain size decreases with the increase in Y2O3content. The influencing mechanisms of different YAl-O secondary phases and sintering temperatures on the grain size and morphology were also discussed based on the experimental results.