期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Studies of flow field characteristics during the impact of a gaseous jet on liquid–water column
1
作者 Jian Wang Wen-Jun Ruan +1 位作者 Hao Wang Li-Li Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第6期293-301,共9页
Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance... Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber. 展开更多
关键词 gaseous JET liquidwater COLUMN pressure OSCILLATIONS shock WAVE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部