This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized...This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.展开更多
Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology ha...Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.展开更多
基金The financial supported by Nakhon Ratchasima Rajabhat University,Nakhon Ratchasimathe National Research Council of Thailand+3 种基金Center of Excellence for Innovation in Chemistry (PERCH-CIC)Office of the Higher Education CommissionMinistry of Education and Materials Chemistry Research CenterDepartment of Chemistry Faculty of Science,Khon Kaen University,Thailand
文摘This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.
文摘Owing to an environment-friendly utilization of resources, increased attention has been focused on fuels and chemicals from biomass as an alternative to fossil resources. In addition, supercritical fluid technology has been considered to be an environmentally-benign treatment. Therefore, its technology was applied for a conversion of biomass to useful fuels and chemicals in order to mitigate environmental loading. For example, supercritical water treatment has demonstrated that lignocellulosics can be hydrolyzed to become lignin-derived products for useful aromatic chemicals and carbohydrate-derived products, such as polysaccharides, oligosaccharides and monosaccharides of glucose, mannose and xylose used for subsequent ethanol fermentation. If this treatment is prolonged, lignocellulosics were found to be converted to organic acids such as formic, acetic, glycolic and lactic acids which can be converted to methane for biofuel. When alcohols, such as methanol and ethanol, were used instead of water, some other useful products were achieved, and its liquefied products were found to have a potential for liquid biofuel. In this study, therefore, our research achievements in supercritical fluid science of woody biomass will be introduced for clean and green chemistry for a sustainable environment.