期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进粒子群算法优化策略的核极限学习机方法研究
被引量:
1
1
作者
高天
龚平顺
《河南科技》
2022年第19期4-8,共5页
本研究通过对核极限学习机的原理进行分析,确定优化参数,分析粒子群算法的基本原理,并对多种改进的粒子群算法进行研究,通过基准测试函数对6种算法的优劣进行分析。笔者选取综合学习粒子群算法为优化核极限学习机的基本框架,并将线性递...
本研究通过对核极限学习机的原理进行分析,确定优化参数,分析粒子群算法的基本原理,并对多种改进的粒子群算法进行研究,通过基准测试函数对6种算法的优劣进行分析。笔者选取综合学习粒子群算法为优化核极限学习机的基本框架,并将线性递减惯性权重和综合学习粒子群算法进行结合,用于改进粒子群算法易陷入局部最优的问题,从而实现对核极限学习机的参数优化。
展开更多
关键词
核极限学习机
参数优化
线性权值下降粒子群算法
综合学习粒子群算法
下载PDF
职称材料
题名
基于改进粒子群算法优化策略的核极限学习机方法研究
被引量:
1
1
作者
高天
龚平顺
机构
安徽理工大学电气与信息工程学院
出处
《河南科技》
2022年第19期4-8,共5页
基金
安徽理工大学创新基金项目(2021CX2071)。
文摘
本研究通过对核极限学习机的原理进行分析,确定优化参数,分析粒子群算法的基本原理,并对多种改进的粒子群算法进行研究,通过基准测试函数对6种算法的优劣进行分析。笔者选取综合学习粒子群算法为优化核极限学习机的基本框架,并将线性递减惯性权重和综合学习粒子群算法进行结合,用于改进粒子群算法易陷入局部最优的问题,从而实现对核极限学习机的参数优化。
关键词
核极限学习机
参数优化
线性权值下降粒子群算法
综合学习粒子群算法
Keywords
kernel
extreme
learning
machine
parameter
optimization
linear
weight
declining
particleswarm
optimization
comprehensive
learning
particle
swarm
optimization
algorithm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进粒子群算法优化策略的核极限学习机方法研究
高天
龚平顺
《河南科技》
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部