The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
This paper is concerned with the problem of H-infinity filtering for discrete-time switched linear systems under arbitrary switching laws.New sufficient conditions for the solvability of the problem are given via swit...This paper is concerned with the problem of H-infinity filtering for discrete-time switched linear systems under arbitrary switching laws.New sufficient conditions for the solvability of the problem are given via switched quadratic Lyapunov functions.Based on Finsler's lemma,two sets of slack variables with special structure are introduced to provide extra degrees of freedom in optimizing the guaranteed H-infinity performance.Compared to the existing methods,the proposed one has better performances and less conservatism.An example is given to illustrate its effectiveness.展开更多
In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed...In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. Th...This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H∞ performance under average dwell-time switching scheme. Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler's lemma and Dualization lemma, some novel conditions for exponential H∞ performance analysis are first proposed and in turn the static output feedback controller designs are developed. It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.展开更多
By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impu...By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.展开更多
The stability analysis and anti-windup design problem is investigated for two linear switched systems with saturating actuators by using the single Lyapunov function approach. Our purpose is to design a switching law ...The stability analysis and anti-windup design problem is investigated for two linear switched systems with saturating actuators by using the single Lyapunov function approach. Our purpose is to design a switching law and the anti-windup compensation gains such that the maximizing estimation of the domain of attraction is obtained for the closed-loop system in the presence of saturation. Firstly, some sufficient conditions of asymptotic stability are obtained under given anti-windup compensation gains based on the single Lyapunov function method. Then, the anti-windup compensation gains as design variables are presented by solving a convex optimization problem with linear matrix inequality (LMI) constraints. Two numerical examples are given to show the effectiveness of the proposed method.展开更多
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
基金supported by the National Natural Science Foundation of China (No. 60974043,61074055)the Fundamental Research Funds for the Central Universities (No. N090604001,N090604002)+1 种基金the China Postdoctoral Science Foundation (No. 20100470203)the Fund of Beijing Excellent Talents Program (No. 2009D013001000016)
文摘This paper is concerned with the problem of H-infinity filtering for discrete-time switched linear systems under arbitrary switching laws.New sufficient conditions for the solvability of the problem are given via switched quadratic Lyapunov functions.Based on Finsler's lemma,two sets of slack variables with special structure are introduced to provide extra degrees of freedom in optimizing the guaranteed H-infinity performance.Compared to the existing methods,the proposed one has better performances and less conservatism.An example is given to illustrate its effectiveness.
基金supported by the National Basic Research Program of China (No. 2007CB714006)the National Natural Science Foundation(No. 61074020)
文摘In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
基金Supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region of China under Project CityU/112907
文摘This paper investigates the problem of robust exponential H∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties. The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H∞ performance under average dwell-time switching scheme. Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler's lemma and Dualization lemma, some novel conditions for exponential H∞ performance analysis are first proposed and in turn the static output feedback controller designs are developed. It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs), which are numerically efficient with commercially available software. Finally, a simulation example is provided to illustrate the effectiveness of the proposed approaches.
文摘By using Impulsive Maximum Principal and three stage optimization method,this paper discusses optimization problems for linear impulsive switched systems with hybridcontrols, which includes continuous control and impulsive control. The linear quadratic optimizationproblems without constraints such as optimal hybrid control, optimal stability and optimalswitching instants are addressed in detail. These results are applicable to optimal control problemsin economics,mechanics, and management.
基金supported by Scientific Research Fund of Education Department of Liaoning Province(No.L2014159)
文摘The stability analysis and anti-windup design problem is investigated for two linear switched systems with saturating actuators by using the single Lyapunov function approach. Our purpose is to design a switching law and the anti-windup compensation gains such that the maximizing estimation of the domain of attraction is obtained for the closed-loop system in the presence of saturation. Firstly, some sufficient conditions of asymptotic stability are obtained under given anti-windup compensation gains based on the single Lyapunov function method. Then, the anti-windup compensation gains as design variables are presented by solving a convex optimization problem with linear matrix inequality (LMI) constraints. Two numerical examples are given to show the effectiveness of the proposed method.