期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
时间序列低分影像修正中分遥感冬小麦分布 被引量:2
1
作者 朱爽 张锦水 《国土资源遥感》 CSCD 北大核心 2020年第1期19-26,共8页
单期中等空间分辨率遥感影像(如Landsat8 OLI)进行冬小麦提取,易受到“异物同谱、同物异谱”影响,造成冬小麦识别结果的“错入、错出”,降低冬小麦识别精度。低空间分辨率遥感影像(如MODIS)获取时间频率高,具有时间序列特征,能够准确地... 单期中等空间分辨率遥感影像(如Landsat8 OLI)进行冬小麦提取,易受到“异物同谱、同物异谱”影响,造成冬小麦识别结果的“错入、错出”,降低冬小麦识别精度。低空间分辨率遥感影像(如MODIS)获取时间频率高,具有时间序列特征,能够准确地刻画出冬小麦生长周期内的特有物候特征,可以有效地消除单期遥感影像上存在的“异物同谱、同物异谱”现象。研究利用MODIS时间序列特征提取出的冬小麦空间分布信息为辅助信息,用来修正单期OLI遥感影像识别冬小麦结果的“错入、错出”误差,以提高冬小麦的识别精度。实验结果表明,在冬小麦错出区域,OLI提取结果的均方根误差(root mean square error,RMSE)为0. 758,经MODIS修正后RMSE为0. 142,降低了0. 616;在冬小麦错入区域,OLI提取结果的RMSE为0. 901,经MODIS修正后RMSE为0. 122,降低了0. 779。可见,该方法能够发挥MODIS有效描述冬小麦生长周期内时间序列特征的优势,对Landsat OLI冬小麦测量结果进行了有效修正,提高了冬小麦测量精度。 展开更多
关键词 时间序列 线性混合像元分解 丰度 一致性分析 修正
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部