为了提高对黄土高原γ中尺度致洪暴雨预报和预警能力,利用NCEP 1°×1°逐6 h再分析资料、常规观测资料、多普勒天气雷达资料等,对2015年7月18日黄土高原发生的一次γ中尺度致洪暴雨进行了诊断分析。结果表明:700~200 h Pa...为了提高对黄土高原γ中尺度致洪暴雨预报和预警能力,利用NCEP 1°×1°逐6 h再分析资料、常规观测资料、多普勒天气雷达资料等,对2015年7月18日黄土高原发生的一次γ中尺度致洪暴雨进行了诊断分析。结果表明:700~200 h Pa深厚低涡和低层切变是这次暴雨的主要影响系统;暴雨发生前暴雨区大气层结对流不稳定增强和对流有效位能的增长为强天气的发生提供了有利条件;暴雨发生前地面图上生成的湿焓高能中心、850 h Pa和700 h Pa等压面上生成的对流涡度矢量垂直分量高值中心和暴雨落区形成很好的对应关系;线状中尺度对流系统中β中尺度对流云团的发展加强对强降水有直接影响;线状中尺度对流系统在雷达回波图上体现为多个对流单体组成的带状回波,影响暴雨区的对流单体回波中心强度>50 d BZ,径向速度场分析表明γ中尺度气旋性辐合的生成和维持为暴雨的持续提供了动力条件。展开更多
Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system ...Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.展开更多
文摘为了提高对黄土高原γ中尺度致洪暴雨预报和预警能力,利用NCEP 1°×1°逐6 h再分析资料、常规观测资料、多普勒天气雷达资料等,对2015年7月18日黄土高原发生的一次γ中尺度致洪暴雨进行了诊断分析。结果表明:700~200 h Pa深厚低涡和低层切变是这次暴雨的主要影响系统;暴雨发生前暴雨区大气层结对流不稳定增强和对流有效位能的增长为强天气的发生提供了有利条件;暴雨发生前地面图上生成的湿焓高能中心、850 h Pa和700 h Pa等压面上生成的对流涡度矢量垂直分量高值中心和暴雨落区形成很好的对应关系;线状中尺度对流系统中β中尺度对流云团的发展加强对强降水有直接影响;线状中尺度对流系统在雷达回波图上体现为多个对流单体组成的带状回波,影响暴雨区的对流单体回波中心强度>50 d BZ,径向速度场分析表明γ中尺度气旋性辐合的生成和维持为暴雨的持续提供了动力条件。
基金supported jointly by the National Key Basic Research and Development (973) Program of China (Grant No. 2014CB441401)the National Natural Science Foundation of China (Grant Nos. 41405007, 41175043, 41475002, and 41205027)
文摘Two intense quasi-linear mesoscale convective systems(QLMCSs) in northern China were simulated using the WRF(Weather Research and Forecasting) model and the 3D-Var(three-dimensional variational) analysis system of the ARPS(Advanced Regional Prediction System) model.A new method in which the lightning density is calculated using both the precipitation and non-precipitation ice mass was developed to reveal the relationship between the lightning activities and QLMCS structures.Results indicate that,compared with calculating the results using two previous methods,the lightning density calculated using the new method presented in this study is in better accordance with observations.Based on the calculated lightning densities using the new method,it was found that most lightning activity was initiated on the right side and at the front of the QLMCSs,where the surface wind field converged intensely.The CAPE was much stronger ahead of the southeastward progressing QLMCS than to the back it,and their lightning events mainly occurred in regions with a large gradient of CAPE.Comparisons between lightning and non-lightning regions indicated that lightning regions featured more intense ascending motion than non-lightning regions;the vertical ranges of maximum reflectivity between lightning and non-lightning regions were very different;and the ice mixing ratio featured no significant differences between the lightning and non-lightning regions.