Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under t...Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under the Plancherel measure. This establishes a close link between random Plancherel partitions and Gauss[an unitary ensembles, In this paper we aim to consider a general problem, namely, to characterize the transition distribution of the limit shape of random Young diagrams under Poissonized Plancherel measures in a periodic potential, which naturally arises in Nekrasov's partition functions and is further studied by Nekrasov and Okounkov[25] and Okounkov[28,29]. We also find an associated matrix mode[ for this transition distribution. Our argument is based on a purely geometric analysis on the relation between matrix models and SeibergWitten differentials.展开更多
基金Supported by the National Natural Science Foundation of China(No.10671176)
文摘Kerov[16,17] proved that Wigner's semi-circular law in Gauss[an unitary ensembles is the transition distribution of the omega curve discovered by Vershik and Kerov[34] for the limit shape of random partitions under the Plancherel measure. This establishes a close link between random Plancherel partitions and Gauss[an unitary ensembles, In this paper we aim to consider a general problem, namely, to characterize the transition distribution of the limit shape of random Young diagrams under Poissonized Plancherel measures in a periodic potential, which naturally arises in Nekrasov's partition functions and is further studied by Nekrasov and Okounkov[25] and Okounkov[28,29]. We also find an associated matrix mode[ for this transition distribution. Our argument is based on a purely geometric analysis on the relation between matrix models and SeibergWitten differentials.