期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
轻量级实时点云分类网络LightPointNet
被引量:
22
1
作者
白静
司庆龙
秦飞巍
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019年第4期612-621,共10页
点云数据的无序性、稀疏性和有限性等特点给基于深度学习的点云模型分类带来了较大的困难.现有的面向点云的深度学习网络存在模型架构复杂、训练参数较多的问题,难以适用于实时点云识别任务,为此提出一种轻量级实时点云网络——LightPoi...
点云数据的无序性、稀疏性和有限性等特点给基于深度学习的点云模型分类带来了较大的困难.现有的面向点云的深度学习网络存在模型架构复杂、训练参数较多的问题,难以适用于实时点云识别任务,为此提出一种轻量级实时点云网络——LightPointNet.首先,基于点云模型的特点及轻量级点云分类网络的设计原则,提出面向点云模型分类的深度学习网络原型;然后,通过控制变量法完成网络参数设置的优化,形成最终的点云网络LightPointNet.该网络结构紧凑,仅包含3层卷积, 1层池化和1层全连接,且其参数个数不到0.07M.实验结果表明,在ModelNet40上,相比PointNet,VoxNet和LightNet,LightPointNet分类精度分别提高了0.29%,6.49%和2.59%,参数量减少了98.0%,92.4%和76.6%;在MINST和SHREC15上,该网络拥有良好的普适性;这些结果充分证明了LightPointNet分类性能良好且计算效率高,具有轻量级、实时性优点,可以部署在嵌入式设备中,在物联网和点云实时处理等方面具有广阔的应用前景.
展开更多
关键词
点云
三维模型分类
深度学习
轻量级实时网络
下载PDF
职称材料
题名
轻量级实时点云分类网络LightPointNet
被引量:
22
1
作者
白静
司庆龙
秦飞巍
机构
北方民族大学计算机科学与工程学院
宁夏智能信息与大数据处理重点实验室
杭州电子科技大学计算机学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019年第4期612-621,共10页
基金
国家自然科学基金(61762003
61502129)
+5 种基金
宁夏自然科学基金(2018AAC03124)
宁夏高等学校一流学科建设(电子科学与技术:NXYLXK2017A07)
国家民族事业委员会"图像与智能信息处理创新团队"
国家民族事业委员会中青年英才计划(2016GQR08)
浙江省自然科学基金(LQ16F020004)
北方民族大学重点科研项目"面向复杂产品广义设计的三维模型检索研究"
文摘
点云数据的无序性、稀疏性和有限性等特点给基于深度学习的点云模型分类带来了较大的困难.现有的面向点云的深度学习网络存在模型架构复杂、训练参数较多的问题,难以适用于实时点云识别任务,为此提出一种轻量级实时点云网络——LightPointNet.首先,基于点云模型的特点及轻量级点云分类网络的设计原则,提出面向点云模型分类的深度学习网络原型;然后,通过控制变量法完成网络参数设置的优化,形成最终的点云网络LightPointNet.该网络结构紧凑,仅包含3层卷积, 1层池化和1层全连接,且其参数个数不到0.07M.实验结果表明,在ModelNet40上,相比PointNet,VoxNet和LightNet,LightPointNet分类精度分别提高了0.29%,6.49%和2.59%,参数量减少了98.0%,92.4%和76.6%;在MINST和SHREC15上,该网络拥有良好的普适性;这些结果充分证明了LightPointNet分类性能良好且计算效率高,具有轻量级、实时性优点,可以部署在嵌入式设备中,在物联网和点云实时处理等方面具有广阔的应用前景.
关键词
点云
三维模型分类
深度学习
轻量级实时网络
Keywords
point
cloud
3D
model
classification
deep
learning
lightweight
real
-
time
network
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
轻量级实时点云分类网络LightPointNet
白静
司庆龙
秦飞巍
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019
22
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部